[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む76 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
142: 2019/08/26(月)23:11:06.44 ID:IVhPobmv(13/16) AAS
時枝解法で言えば、商射影の切断はなんでもいい。とにかく存在しさえすれば勝てる戦略の存在が証明できてしまう。
こういう面白さを味わうのが人間。
俺の直観が正しいはずだあああ!喚くのがサル。
227: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/27(火)22:58:53.44 ID:TQfuB7BH(20/23) AAS
メモ(数学やないけどね(^^; )
”朴 葵姫(パク・キュヒ) アランブラ宮殿の思い出”
絶品やね
動画リンク[YouTube]
朴 葵姫(パク・キュヒ) アランブラ宮殿の思い出 Recuerdos de la Alhambra
lalarurulalaruru22 2013/05/23 に公開
70 machang
種々、演奏家の、この曲を聴きましたが、彼女の演奏が一番、私の心に響きました。最高。
gensan1647
素晴らしい!
久しぶりに心が洗われたような気がした・・・ありがとう
中島隆司
本当、トレモロ凄く綺麗!
ゆったりとした演奏に感激。
外部リンク[html]:columbia.jp
朴葵姫(パク・キュヒ)Kyuhee Park
1985年韓国生まれ。日本と韓国で育つ。
3歳で横浜にてギターをはじめ、これまでに荘村清志、福田進一、A.ピエッリ各氏に師事。東京音楽大学を経て、2014年ウィーン国立音楽大学を首席で卒業。
2016年アリカンテクラシックギターマスターコースを首席で卒業。05年小澤征爾指揮によるオペラ公演に参加。
07年ハインツベルグ国際ギターコンクール第1位及び聴衆賞、08年コブレンツ国際ギターコンクール第2位(1位なし)、ベルギー“ギターの春2008”第1位(コンクール史上アジア人そして女性として初めて)、リヒテンシュタイン国際ギターコンクール第1位、09年アレッサンドリア国際ギターコンクール第2位及び特別賞(ヤングアーティスト賞)、
12年アルハンブラ国際ギターコンクール第1位&聴衆賞、
14年ポーランドのJan Edmund Jurkowski記念ギターコンクール2014優勝。
他多くの主要国際ギターコンクールで優勝・受賞。
348(1): 2019/08/30(金)07:12:02.44 ID:EvACihHh(8/21) AAS
>>346
>私の発言ではない!!
>「6コ中の最大値である確率は、1/6」と「言いたいんだろ?」
あー、ニワトリ君、そこで諦めたら
また元のおバカちゃんに逆戻りだよw
君が「6コ中の最大値である確率は、1/6」と思ったんだよね
だから、私は君のその考えが正しい、と褒めてあげたんだよ
素直に喜ばなきゃ 「やった!!!」ってwww
で、100列が定数でも有限列の場合も問題ないことは理解できた
>>309の式に反論の余地ないだろ?あるわけない
反論したら「高校の数学が分かってない」ってことになるもんねw
もう、キミは詰んでるんだよ
ま、勝手に「時枝記事は間違ってる!」ていって詰んだんだけどねw
470: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/31(土)21:50:37.44 ID:PbGhNKv4(25/30) AAS
>>468 タイポ訂正
私は、サイコロ2つの目の和を、可算無限個ある.箱を入れました
↓
私は、サイコロ2つの目の和を、可算無限個ある.箱に入れました
な(^^;
分ると思うがw
621(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/02(月)17:36:36.44 ID:7XXWjS4V(7/8) AAS
>>620 補足
>自然数は加法について、0 を単位元とする可換モノイドになっている。また、乗法についても、1 を単位元とする可換モノイドになっている。
言い逃れができないようにw(^^;
外部リンク:ja.wikipedia.org
モノイド
(抜粋)
数学、とくに抽象代数学における単系(たんけい、英: monoid; モノイド)はひとつの二項演算と単位元をもつ代数的構造である。モノイドは単位元をもつ半群(単位的半群)であるので、半群論の研究対象の範疇に属する。
定義
集合 S とその上の二項演算 ・: S × S → S が与えられ、以下の条件
を満たすならば、組 (S, ・, e) をモノイドという。
2.3 可換モノイド
演算が可換であるようなモノイドは、可換モノイド (commutative monoid) という(稀にアーベルモノイド (abelian monoid) ともいう)。可換モノイドはしばしば二項演算の記号を "+" として加法的に書かれる。
外部リンク:ja.wikipedia.org
代数的構造
代数的構造の例
・モノイド: 単位元を持つ半群
・群: 任意の元が逆元を持つモノイド
757(2): 2019/09/06(金)07:52:17.44 ID:hPDyvlKG(2/4) AAS
>>748
> できます!(^^
「1つずつ」だから当然極限はとらずにですよ?
後続が無限(回)になるような自然数は存在しないのにできるのですか?
>>742
> 無理数が、有理数のコーシー列で定義されるというのも同じ。
> 任意の有限順序数nの範囲では、あくまで有理数にすぎない
なんでしょ
たとえば e = 2.71828... は無限小数 = 無限数列(cf. game1)
すると2.7や2.71および2.718は後ろに0を無限個つけて無限小数と見れば
全て同値類が等しいが無限小数 e = 2.71828... とは同値類は一致しない
「1つずつ」では同値類は変化しないのにたとえば2.718...000...00...の同値類を
無限小数 e = 2.71828...の同値類にどうやってスレ主は変化させるのかが
知りたいのです
783(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/07(土)08:07:40.44 ID:8WzaZQff(2/27) AAS
>>782
つづき
数学史における位置付け
18世紀、オイラーらによって大きな進歩を遂げた解析学は、19世紀にはより厳密性が求められるようになった。そこでボルツァーノやコーシーらによって連続や収束がはっきりと捉えられるようになったものの、未だに実数とは何であるのか不明瞭であった。
19世紀後半には実数を算術的に定義する方法が盛んに研究され、その中で現在コーシー列と呼ばれる概念を導入したのがカントールである。
カントールがこの成果を発表したのは1872年で、1821年に発表されたコーシーの収束判定法を満たす数列を用いて実数を定義しようという、当時一般的だった考え方に基づいている。
このコーシーの収束判定法を満たす数列としてコーシー列が用いられ、実数はコーシー列の極限として定義された。
20世紀には、フレシェが函数空間の研究において距離を用いてコーシー列を改めて定義している。これによって、極限に関わる概念は距離とコーシー列で定義されるようになった。
(引用終り)
>R^Nの元は自由に選べるのですよ
笑えます
自由に選べるなら
R^Nの元で、{1,2,3,4,5,6}のみからなる元を取り出せば、サイコロの目による数列そのものじゃないですかw(^^
無益な論争になって(平行線)きたので、こうしましょう
時枝の可算無限個の箱を用意する方法と同じ方法で、サイコロの目を箱に入れます
可算無限個の箱を一つずつ用意するのが、普通と思いますよ。そのときは、サイコロを1回ずつ投げます
可算無限個の箱を一気に全部用意するなら、同様に、可算無限個のサイコロを一気に投げますw(^^
QED
804(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/07(土)11:02:17.44 ID:8WzaZQff(15/27) AAS
>>802-803
ゲンツェン (1936).か
おサルは、えらく古い話をしっているなー(^^
赤 摂也先生、培風館ねー
おサルは、三歳児なのに、よく知っているね〜w(^^
外部リンク:ja.wikipedia.org
赤攝也(せき せつや)
(抜粋)
来歴
石川県金沢市に生まれる。筆名・愛知三郎。1949年東京大学理学部数学科卒業。51年同大学院(旧制)修了。1961年東京教育大学理学博士。1962年立教大学助教授、教授、1984年東京教育大学教授、90年定年退官、放送大学教授、客員教授。
数学者吉田洋一は義父、哲学者の吉田夏彦は義兄にあたる。妻は翻訳家の赤冬子(1930-、立教大学英文科卒)。弥永昌吉ゼミ研究生だった関恒義一橋大学名誉教授の妻は妹[2]。
人物
数学基礎論の権威として知られる。
外部リンク:ja.wikipedia.org
培風館
外部リンク:www.baifukan.co.jp
株式会社 培風館
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.044s