[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む76 (1002レス)
1-

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
785
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/07(土)08:36 ID:8WzaZQff(4/27) AAS
コーシー列のついでに、メモ貼るよ
まあ、εδみたいな狭い視点ではなく、”開集合、有向点族(ネット)、フィルター (filter) ”などを、一気に理解するのが正解だよ
21世紀は、”ネット”の時代かも (おやじギャグ)w(^^
外部リンク:ja.wikipedia.org
有向点族
(抜粋)
有向点族(ゆうこうてんぞく、directed family of points)とは、点列を一般化した概念で、ムーア (Eliakim Hastings Moore) とスミス (H. L. Smith) により1922年に定義された。有向点族はネット (net)、有向点列、 Moore-Smith 列などとも呼ばれる。

点列との違いは添え字にあり、点列が自然数という可算な全順序集合の元で添え字付けられるのに対し、有向点族はより一般的な順序集合である(可算または非可算な)有向集合の元で添え字付けられている。

有向点族の概念の利点として以下の2つがある:
・点列にある「可算性」、「全順序性」という束縛がなくなる。
 点列の場合はこうした束縛ゆえに定理を証明する際に空間に可算性に関する何らかの仮定(第一可算公理など)を課さねばならなくなる事があるのに対し、有向点族ではそのような条件なしに同様の定理が証明できる場合がある。
・複数の収束概念を統一的に扱う事ができる。
 例えば点列の収束、実数値関数の収束、リーマン積分におけるリーマン和等は有向点族の収束概念の特殊ケースとみなせる。

特に重要なのは、開集合、閉包、連続性などの位相構造に関する概念を有向点族の収束性で特徴づけられる事である。それに対し点列の場合はその添え字の可算性ゆえ、同様の特徴づけを行うには空間の方にも可算性に関する条件が必要となる(詳細は列型空間を参照)。

なお、添え字集合を有向集合にした事は、位相空間上の各点の近傍系が有向集合である(詳細後述)事と相性がよく、これも点列概念の不十分さを解消する上で一役買っている。

つづく
1-
あと 217 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.018s