[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む76 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む76 http://rio2016.5ch.net/test/read.cgi/math/1566715025/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
688: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/09/04(水) 07:09:59.43 ID:5W6wekr5 >>687 つづき 1.4.1 確率変数とは 確率空間(Ω,F, P)(可測空間(Ω,F) とその上の確率測度P)が与えられたとする.(Ω,F, P) 上の確率変数とは,大ざっぱには「その値が確率的に(ランダムに)変動する数」のこと.土台 になる確率空間を考えた上での確率変数だから,それぞれの値をとる確率は(原理的に)計算で きる.例えば, 例1.4.1: さいころを一回投げる場合,出た目の数をX とすると,X は1, 2, 3, 4, 5, 6 のどれ かをとる確率変数.P[X = i] = 1/6 と言うのが自然(i = 1, 2, 3, . . . , 6). 例1.4.2: さいころを2つ投げるとき,出た目の合計をZ とすると,Z は2 から12 の値をと る確率変数.P[Z = 2] =1/36, P[Z = 3] =1/18, P[Z = 4] =1/12など. 例1.4.3: 宝くじを一枚買ったとして,それが当たった賞金の額も確率変数(ハズレは0 円と して). 概念としては簡単なんだけど,これは実用上,なかなか有用である.そもそも確率変数は,以 下の「期待値」や「分散」などを通して,対象とする確率モデルをよりよく理解する(特徴づけ る)ために使われることが多い. 一般の場合の厳密な定義を一応,書いておこう. 定義1.4.1 (可測函数) 定義1.4.2 (実確率変数) 定義1.4.3 (確率変数,一般バージョン) (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1566715025/688
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 314 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.012s