[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む76 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む76 http://rio2016.5ch.net/test/read.cgi/math/1566715025/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
593: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/09/01(日) 20:06:27.10 ID:dvD9YE7H >>591 補足 下記Denis "I think it is ok, because the only probability measure we need is uniform probability on {0,1,…,N-1}" に対して 厳密な数学の証明がないというのが、Pruss氏、確率論の専門家さんと、私ね(^^ (そもそも、Denis氏に対する批判” but other people argue it's not ok, because we would need to define a measure on sequences, and moreover axiom of choice messes everything up.”もあ
るよ) (>>241) そこを(数学的に厳密でないと)批判しているのが、Alexander Pruss氏だよ https://mathoverflow.net/questions/151286/probabilities-in-a-riddle-involving-axiom-of-choice Probabilities in a riddle involving axiom of choice Dec 9 '13 (抜粋) asked Dec 9 '13 at 16:16 Denis I think it is ok, because the only probability measure we need is uniform probability on {0,1,…,N-1}, but other people argue it's not ok, because we would need to define a measure on sequences, and moreover axiom of choice me
sses everything up. Alexander Pruss answered The probabilistic reasoning depends on a conglomerability assumption, namely that given a fixed sequence u ̄ , the probability of guessing correctly is (n?1)/n, then for a randomly selected sequence, the probability of guessing correctly is (n?1)/n. But we have no reason to think the event of guessing correctly is measurable with respect to the probability measure induced by the random choice of sequence and index i, and we have no reason to think that the congl
omerability assumption is appropriate. A quick way to see that the conglomerability assumption is going to be dubious is to consider the analogy of the Brown-Freiling argument against the Continuum Hypothesis (see here for a discussion). http://www.mdpi.com/2073-8994/3/3/636 つづく http://rio2016.5ch.net/test/read.cgi/math/1566715025/593
594: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/09/01(日) 20:06:59.39 ID:dvD9YE7H >>593 つづき スレ73 https://rio2016.5ch.net/test/read.cgi/math/1563282025/486- (>>486より再録) 過去、確率論の専門家さん来訪して、Pruss氏の指摘(2013)とほぼ同じことを指摘している(下記) (参考確率論の専門家さん ID:f9oaWn8A) スレ20 http://wc2014.2ch.net/test/read.cgi/math/1466279209/519- 519 132人目の素数さん 投稿日2016/07/03(日)ID:f9oaWn8A >>518 X=(X_1,X_2,…)をR値の独立な確率変数と
する. 時枝さんのやっていることは 無限列x=(x_1,x_2,…)から定められた方法によって一つの実数f(x)を求める. 無限列x=(x_1,x_2,…)から定められた方法によって一つの自然数g(x)を求める. P(f(X)=X_{g(X)})=99/100 ということだが,それの証明ってあるかな? 100個中99個だから99/100としか言ってるようにしか見えないけど. 522 132人目の素数さん 投稿日2016/07/03(日)ID:f9oaWn8A 面倒だから二列で考えると Y=(X_1,X_3,X_5,…)とZ=(X_2,X_4,X_6,…)独立同分布 実数列x=(x_1,x_2,…)から最大番号を与える関数をh(x)とすると P(h(Y)>h(Z)
)=1/2であれば嬉しい. hが可測関数ならばこの主張は正しいが,hが可測かどうか分からないのでこの部分が非自明 528 132人目の素数さん 投稿日2016/07/03(日)ID:f9oaWn8A おれが問題視してるのはの可測性 正確にかくために確率空間(Ω,F,P)を設定しよう Y,Zはそれぞれ(Ω,F)から(R^N,B(R^N))の可測関数である. もしhが(R^N,B(R^N))から(N,2^N)への可測関数ならば h(Y),h(Z)はそれぞれ可測関数となって{ω|h(Y(ω))>h(Z(ω)}∈FとなりP({ω|h(Y(ω))>h(Z(ω)})=1/2となるけど hが(R^N,B(R^N))から(N,2^N)への可測関数とは正直思えない 532
返信132人目の素数さん 投稿日2016/07/03(日)ID:f9oaWn8A >>530 >2個の自然数から1個を選ぶとき、それが唯一の最大元でない確率は1/2以上だ 残念だけどこれが非自明. hに可測性が保証されないので,d_Xとd_Yの可測性が保証されない そのためd_Xとd_Yがそもそも分布を持たない可能性すらあるのでP(d_X≧d_Y)≧1/2とはいえないだろう (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1566715025/594
595: 132人目の素数さん [sage] 2019/09/01(日) 20:25:56.68 ID:IVtPZNby >>592 > 任意の自然数 n とはnの後ろにn+1, n+2, ... と自然数が無限個あるんだよ > 実数列の集合 R^Nを考える これは最初から箱の数は無限個 > 数学的帰納法 > (抜粋) > 任意の自然数 n について P(n) が成り立つ これもP(n)が箱の中身に関することなら最初から箱の数は無限個 数学的帰納法では箱の数を有限個から無限個にはできない http://rio2016.5ch.net/test/read.cgi/math/1566715025/595
596: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/09/01(日) 20:43:01.30 ID:dvD9YE7H >>595 1) もし、反例の自然数o∈Nがあったとする 2) しかし、数学的帰納法で、あるnについて成立つとして( n<o と仮定して)、 m=o−n で、mが有限である限り 必ず、n+1, n+2, ...で、自然数oに到達する 3) 従って、o∈N なる反例はない! QED 自然数に∞が含まれている?ww(^^ http://rio2016.5ch.net/test/read.cgi/math/1566715025/596
597: 132人目の素数さん [sage] 2019/09/01(日) 21:08:36.60 ID:IVtPZNby >>596 > あるnについて成立つとして > 必ず、n+1, n+2, ...で、自然数oに到達する >>583 > 確率変数X1,X2,・・・,Xn n+1, n+2, ... はないから到達しないでしょ http://rio2016.5ch.net/test/read.cgi/math/1566715025/597
598: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/09/01(日) 21:23:09.48 ID:dvD9YE7H >>597 >>>583 >> 確率変数X1,X2,・・・,Xn >n+1, n+2, ... はないから到達しないでしょ 到達するよ(確率変数有限は高校まで) (>>405ご参照) 確率計算(大学数学) ・箱がn→∞個だったら、確率変数X1,X2,・・・,Xn,・・・ ・時枝先生の独立性に関する反省も 「独立な確率変数の”無限”族 X1,X2,X3,…」 (参考) http://web.econ.keio.ac.jp/staff/hattori/probab.htm 確率論 服部哲弥 慶応 ht
tp://web.econ.keio.ac.jp/staff/hattori/probab.pdf 確率論講義録 (約750KB pdf file・Last update 2011/09/09) 確率論(数学3年後期選択) probab.tex 服部哲弥 スレ74 https://rio2016.5ch.net/test/read.cgi/math/1564659345/641- http://www.f.waseda.jp/sakas/stochastics/stochastics.pdf/aspText.pdf 「確率過程とその応用」 逆瀬川浩孝 スレ74 https://rio2016.5ch.net/test/read.cgi/math/1564659345/72- https://www.math.kyoto-u.ac.jp/~ichiro/lectures/2013bpr.pdf 2013年度前期 確率論基礎 講義ノート 重川一郎 京都大学大学院理
学研究科数学教室 https://ja.wikipedia.org/wiki/%E7%8B%AC%E7%AB%8B%E5%90%8C%E5%88%86%E5%B8%83 独立同分布(IID) 以上 (参考) スレ47 https://rio2016.5ch.net/test/read.cgi/math/1512046472/22- (抜粋) 数学セミナー201511月号P37 時枝記事より 「もうちょっと面白いのは,独立性に関する反省だと思う. 確率の中心的対象は,独立な確率変数の無限族 X1,X2,X3,…である. n番目の箱にXnのランダムな値を入れられて,ある箱の中身を当てようとしたって, その箱のX と他のX1,X2,X3,・・・がまるまる無限族として独立なら, 当てられっこ
ないではないか−−他の箱から情報は一切もらえないのだから. (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1566715025/598
599: 132人目の素数さん [] 2019/09/01(日) 21:30:50.55 ID:CU1S7ZwH サル馬鹿過ぎ http://rio2016.5ch.net/test/read.cgi/math/1566715025/599
600: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/09/01(日) 21:41:24.39 ID:dvD9YE7H ありがと 踊ってくれて by サル回しのスレ主より http://rio2016.5ch.net/test/read.cgi/math/1566715025/600
601: 132人目の素数さん [sage] 2019/09/01(日) 21:42:28.63 ID:IVtPZNby >>598 > 到達するよ(確率変数有限は高校まで) 到達しないから無限公理が必要なんだよ > ・箱がn→∞個だったら、確率変数X1,X2,・・・,Xn,・・・ 極限をとるのなら極限値として最初から無限個のものが必要じゃん > 確率変数X1,X2,・・・,Xn,・・・ これが極限値で無限個 http://rio2016.5ch.net/test/read.cgi/math/1566715025/601
602: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/09/01(日) 22:28:24.78 ID:dvD9YE7H >>601 >>601 分かってないな(^^ >到達しないから無限公理が必要なんだよ 中学数学からの常識でしょ?w 「無限公理」は、デフォルトであり、”標準”です 「有限主義」を唱えない限り、”標準”です 数学的帰納法+「無限公理」は、デフォルトであり、”標準”です 分かってないな 下記よめ https://ja.wikipedia.org/wiki/%E6%95%B0%E5%AD%A6%E7%9A%84%E5%B8%B0%E7%B4%8D%E6%B3%95 数学的帰納法 (抜粋) 数学的帰納
法の形式的な取り扱い 従って有限回のステップでは有限個の n に対してしか P(n) を結論づける事ができず、「無限個ある自然数全てに対して P(n) が成り立つ」という数学的帰納法の結論について有限の長さの証明が与えられたとはいえない。これが前述した直観的説明におけるギャップである。 そこで、ペアノ算術などの形式的な体系では、数学的帰納法を証明に用いてよいことが公理として仮定されるのが普通である。つまり、形式的には、自然数の性質から数学的帰納法の正しさが証明できるのではなく、逆に自然数の本質的な性質を与える推論規則とし
て数学的帰納法が仮定される、ということになる。 つづく http://rio2016.5ch.net/test/read.cgi/math/1566715025/602
603: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/09/01(日) 22:28:56.53 ID:dvD9YE7H >>602 同値な定式化 集合論の枠組みでは、数学的帰納法の原理を次のように表すことができる[1]。 自然数 N の部分集合 A が空でないとき、A に属する最小の自然数が存在する。 この原理からもともとの形の数学的帰納法が導かれることは,次のようにして示せる。帰納法の仮定 1., 2. を満たす論理式 P(n) が与えられたとする。自然数の部分集合 A を A = { n ∈ N : ¬ P(n) } によって定める。この A が空集合であるということを示し
たい。 そうでないと仮定すると、Aに属する最小の自然数 a を取ることができるが、P(0)は成り立っていることから a は0でない。従って、ある自然数 b について a = b + 1となっているが、a は A に属する最小の自然数であったということから、b not∈ A であり、P(b) は成り立つことになる。帰納法の仮定から P(a) も成り立つことになり、これは矛盾である。 逆に、「n 以下の任意の自然数 k について k not∈ A」という形の命題 P(n) を考えることで、数学的帰納法から上の原理を導くことができる。A を自然数のある集合とし、A に属する最小の自然
数が存在しないと仮定する。 もし P(0) が成り立たないと、0 が A に属する最小の自然数となって仮定に反するから、P(0) は成り立つ。P(n) が成り立つとし、もし P(n + 1) が成り立たないとすると、n + 1 が A の最小の自然数となって仮定に反するから、P(n + 1) も成り立つ。よって数学的帰納法により A は空となる。 (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1566715025/603
604: 132人目の素数さん [] 2019/09/01(日) 22:30:30.31 ID:CU1S7ZwH 有限列は無限に存在するが、どれも無限列ではない サルに無限は無理 http://rio2016.5ch.net/test/read.cgi/math/1566715025/604
605: 132人目の素数さん [] 2019/09/01(日) 22:34:21.87 ID:CU1S7ZwH 数学的帰納法も使いこなせない自称阪大卒w 近所の高校生に教えてもらえw http://rio2016.5ch.net/test/read.cgi/math/1566715025/605
606: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/09/01(日) 23:19:35.30 ID:dvD9YE7H >>604-605 ありがとう 踊ってくれて by サル回しのスレ主より だれが、無限が分かっていなかったのかな?w だれが、数学的帰納法が分かっていなかったのかな?ww(^^ http://rio2016.5ch.net/test/read.cgi/math/1566715025/606
607: 132人目の素数さん [sage] 2019/09/01(日) 23:23:20.88 ID:IVtPZNby >>602 > 「無限公理」は、デフォルトであり だから箱の数を数学的帰納法で無限個に増やすのはナンセンスだと いっているのだが > 中学数学からの常識でしょ?w スレ主がその常識に従っていないんだよ {X1}, {X1, X2}, ... , {X1, X2, ... , Xn}, ... (**)と数学的帰納法で やっていっても{X1, X2, ... , Xn, ... }は作れないんだよ (**)の末尾の , ... (= 無限にという意味)は帰納法では{}の中に入れられない 自然数の場合は {0}, {0, 1}, ... , {0, 1, ..
. , n}, ... と同様の形になるが 1 = {0}, 2 = {0, 1}, ... , n + 1 = {0, 1, ... , n} と定義できるから {1, 2, ... , n, ... } = (無限集合)N と定義できる ただしNは自然数全体の集合であって自然数ではない http://rio2016.5ch.net/test/read.cgi/math/1566715025/607
608: 132人目の素数さん [] 2019/09/01(日) 23:24:45.99 ID:CU1S7ZwH >>606 おまえw http://rio2016.5ch.net/test/read.cgi/math/1566715025/608
609: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/09/02(月) 07:24:54.54 ID:C7KIpkvI >>607-608 >> 「無限公理」は、デフォルトであり >だから箱の数を数学的帰納法で無限個に増やすのはナンセンスだと ・ペアノの公理が理解できていませんね。下記をお読みください(^^ ・あなたの主張だと、「出題者が箱に1つずつ数を入れていく」(下記時枝ご参照)だと、そもそも可算無限長の数列が作れなくなりますよね。それはおかしいw(^^; ・数学的帰納法が分かっていないのは、だれでしょうね?w (参考) h
ttps://ja.wikipedia.org/wiki/%E3%83%9A%E3%82%A2%E3%83%8E%E3%81%AE%E5%85%AC%E7%90%86 ペアノの公理 (抜粋) ペアノの公理とは、自然数全体を公理化したものである。1891年に、ジュゼッペ・ペアノによって定義された。 定義 2.任意の自然数 a にはその後者 (successor)、suc(a) が存在する(suc(a) は a + 1 の "意味")。 http://tenmei.cocolog-nifty.com/matcha/2009/11/post-81dd.html 「1+1=2」はなぜか?〜ペアノの自然数論(足し算) テンメイのRUN&BIKE 2009年11月28日 (抜粋) ペアノの根本的なアイデアは、
現実世界の足し算を証明するのではなく、 人工的な数学の世界で足し算を作るということだ。それでは現実と関係 ないのかというと、そんな事はない。普通の足し算はすべて完全に導き 出せるし、現実離れしたおかしな話が出てくることもない。 (>>350より) スレ47 https://rio2016.5ch.net/test/read.cgi/math/1512046472/ 時枝問題(数学セミナー201511月号の記事) 「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる. どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよ
い. もちろんでたらめだって構わない.そして箱をみな閉じる. 今度はあなたの番である.片端から箱を開けてゆき中の実数を覗いてよいが,一つの箱は開けずに閉じたまま残さねばならぬとしよう. どの箱を閉じたまま残すかはあなたが決めうる. 勝負のルールはこうだ. もし閉じた箱の中の実数をピタリと言い当てたら,あなたの勝ち. さもなくば負け. 勝つ戦略はあるでしょうか?」 あと >>598&>>596&>>592&>>583 以上 http://rio2016.5ch.net/test/read.cgi/math/1566715025/609
610: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/09/02(月) 08:21:27.33 ID:C7KIpkvI >>609 補足 >>> 「無限公理」は、デフォルトであり >>だから箱の数を数学的帰納法で無限個に増やすのはナンセンスだと >・ペアノの公理が理解できていませんね。下記をお読みください(^^ ・公理が分かってない ・箱を1つずつ増やすことにも、ペアノの公理が適用できて、自然数類似の可算無限集合ができるということ ・それは、”同型の違いを除いて一意に定めることができる” ・それが、ペアノの公理です(下
記) (参考) https://ja.wikipedia.org/wiki/%E3%83%9A%E3%82%A2%E3%83%8E%E3%81%AE%E5%85%AC%E7%90%86 ペアノの公理 (抜粋) 存在と一意性 この構成法はジョン・フォン・ノイマンによる[1]。 これは可能なペアノシステムの構成法として唯一のものではない。 例えば、集合 N = {0, 1, 2, ...} の構成と上記の後者関数 suc を仮定して、 X := {5, 6, 7, ...}, x := 5, と f := X 上に限定した後者関数、と定義したならば、これもまたペアノシステムである。 一階述語論理で定式化されたペアノの公理は、無数の超準モデルを持つ。(レーヴェンハイム
=スコーレムの定理) 二階述語論理によって定式化することで、ペアノシステムを同型の違いを除いて一意に定めることができる[2]。 ラムダ計算はペアノの公理を満たす自然数の、異なる構成法を与える。 http://rio2016.5ch.net/test/read.cgi/math/1566715025/610
611: 132人目の素数さん [sage] 2019/09/02(月) 08:39:27.49 ID:kFA/TyuL >>609 > それはおかしい 無限個まとめて入れないと無限個は入れられないですよ 極限をつかってR^Nのある元を 「出題者が箱に1つずつ数を入れていった」結果だと みなすことは出来る(ただし入れるわけではない) 極限を使いたいならまず極限値がないといけないので 結局無限数列を用意しておかなければならない >>609 >>610 数学的帰納法をつかうなら 中身(未定義なので数とは限らない)が入った箱が無限個ある から始めれば {0, 0, ... , 0, ... }
や{1, 2, ... , n , ... }は作ることができる ただしランダムな数はn番目までの数からn+1番目の数が決められないので 数学的帰納法は使えない > ペアノの公理が理解できていませんね > 自然数全体を公理化 理解できていないのはスレ主ですよ 前にも書いたが自然数全体の集合は自然数ではない ペアノの公理は無限公理により要素を無限個もつ集合が存在する つまり{?, ?, ... , ?, ... }に対して 1から始めるのなら最初が1で n + 1 = (n) + 1 = suc(n)となるから {1, 2, ... , n, n + 1, ... } ペアノの公理を使って言えることはある無限集合(
無限公理による)が 自然数全体の集合であることであって数を1つずつ入れていくわけではない http://rio2016.5ch.net/test/read.cgi/math/1566715025/611
612: 132人目の素数さん [] 2019/09/02(月) 08:52:47.06 ID:JXpq+Nci >>609 >・ペアノの公理が理解できていませんね。下記をお読みください(^^ おまえ >・あなたの主張だと、「出題者が箱に1つずつ数を入れていく」(下記時枝ご参照)だと、そもそも可算無限長の数列が作れなくなりますよね。それはおかしいw(^^; 一つずつ入れる必要はない >・数学的帰納法が分かっていないのは、だれでしょうね?w おまえ http://rio2016.5ch.net/test/read.cgi/math/1566715025/612
613: 132人目の素数さん [] 2019/09/02(月) 08:53:34.10 ID:JXpq+Nci >>609 >>・あなたの主張だと、「出題者が箱に1つずつ数を入れていく」(下記時枝ご参照)だと、そもそも可算無限長の数列が作れなくなりますよね。それはおかしいw(^^; おまえの知能って哀れ過ぎるド素人並みだなw http://rio2016.5ch.net/test/read.cgi/math/1566715025/613
614: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/09/02(月) 10:26:41.08 ID:7XXWjS4V >>611 >無限個まとめて入れないと無限個は入れられないですよ 奇説、珍説ですね >結局無限数列を用意しておかなければならない 百歩譲って ええ、時枝に従って 「独立な確率変数の無限族 X1,X2,X3,…」が、用意できますよ これを、まとめて箱に入れます 確率変数の無限族が用意できることは、大学数学の常識です (下記、服部、逆瀬川、重川など) ヒトの数学では、確率変数を箱に入れることはできます。確率変数の定
義をお読みください (あなたのレベルなら、高校数学の>>404あたりでどうでしょうか。読めばわかります(^^ ) (参考) スレ47 https://rio2016.5ch.net/test/read.cgi/math/1512046472/22- (抜粋) 数学セミナー201511月号P37 時枝記事より 「もうちょっと面白いのは,独立性に関する反省だと思う. 確率の中心的対象は,独立な確率変数の無限族 X1,X2,X3,…である. n番目の箱にXnのランダムな値を入れられて,ある箱の中身を当てようとしたって, その箱のX と他のX1,X2,X3,・・・がまるまる無限族として独立なら, 当てられっこない
ではないか−−他の箱から情報は一切もらえないのだから. (引用終り) (参考) http://web.econ.keio.ac.jp/staff/hattori/probab.htm 確率論 服部哲弥 慶応 http://web.econ.keio.ac.jp/staff/hattori/probab.pdf 確率論講義録 (約750KB pdf file・Last update 2011/09/09) 確率論(数学3年後期選択) probab.tex 服部哲弥 スレ74 https://rio2016.5ch.net/test/read.cgi/math/1564659345/641- http://www.f.waseda.jp/sakas/stochastics/stochastics.pdf/aspText.pdf 「確率過程とその応用」 逆瀬川浩孝 スレ74 https://rio2016.
5ch.net/test/read.cgi/math/1564659345/72- https://www.math.kyoto-u.ac.jp/~ichiro/lectures/2013bpr.pdf 2013年度前期 確率論基礎 講義ノート 重川一郎 京都大学大学院理学研究科数学教室 https://ja.wikipedia.org/wiki/%E7%8B%AC%E7%AB%8B%E5%90%8C%E5%88%86%E5%B8%83 独立同分布(IID) 以上 http://rio2016.5ch.net/test/read.cgi/math/1566715025/614
615: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/09/02(月) 10:29:19.99 ID:7XXWjS4V >>612-613 おサルさん、今日も元気にご苦労さん by サル回しのスレ主より それ全然反論になってない 説得力なし やっぱりおサルだねw(^^ http://rio2016.5ch.net/test/read.cgi/math/1566715025/615
616: 132人目の素数さん [sage] 2019/09/02(月) 17:03:37.22 ID:pUa7sBFm お久しぶりです、おっちゃんです。 このスレは、もはやレジェンドになっているね〜。 それじゃ、おっちゃんもう寝る。 http://rio2016.5ch.net/test/read.cgi/math/1566715025/616
617: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/09/02(月) 17:08:29.87 ID:7XXWjS4V おっちゃん、どうも、スレ主です。 お元気そうでなによりです。 おやすみなさい(^^ http://rio2016.5ch.net/test/read.cgi/math/1566715025/617
618: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/09/02(月) 17:12:10.03 ID:7XXWjS4V >>614 補足 <自然数と数学的帰納法> 下記嫁め 「最後の公理は、数学的帰納法を正当化するものである。」 「集合論において標準的となっている自然数の構成は以下の通りである。 ・自然数は「後者関数について閉じていて、0 を含む M の部分集合の共通部分」として定義される。 無限集合の公理により集合 M が存在することが分かり、このように定義された集合がペアノの公理を満たすことが示される。 このとき、それぞれの
自然数は、その数より小さい自然数全てを要素とする数の集合、となる。」 (参考) https://ja.wikipedia.org/wiki/%E8%87%AA%E7%84%B6%E6%95%B0 自然数 (抜粋) 自然数とは、個数、もしくは順番を表す一群の数のことである。集合論においては、自然数は物の個数を数える基数のうちで有限のものであると考えることもできるし、物の並べ方を示す順序数のうちで有限のものであると考えることもできる。 自然数の歴史と零の地位 最初の大きな進歩は、数を表すための記数法の発明であり、これで大きな数を記録することが出来るようになった。 バビロニアで
は、数字を離して表記することでその桁が 0 であることを示す六十進法の位取り記数法に似た方法が開発された。 オルメカとマヤの文明では紀元前1世紀までには、数字を離して 0 の桁を表す方法が独立に用いられていた。 抽象的な概念としての数の体系的な最初の研究は、古代ギリシアにおいてなされ、数論が高度にまで発達した。古代ギリシアの数学者エウクレイデスが編纂した『原論』の第7巻の冒頭で数の定義がなされている[1]。 1.単位とは存在するもののおのおのがそれによって 1 とよばれるものである。 2.数とは単位から成る多である。 これは定規
とコンパスによる作図で数を定義したものと解釈できる。すなわち、任意に与えた線分の長さを単位として 1 を定義する。 そして、その線分を延長した直線上で単位を半径とする長さをコンパスで測り、その直線上でその単位を半径とする円との交点を作図し、その円の直径を 2 と定義する。同様にその直線上で円の直径に半径を繋いだ線分を作図し、その線分の長さを 3 と定義する。 したがって、1 は数ではなく単位であり、2, 3, 4, …が数になるため、古代ギリシア人は 1 を数として認識しなかったと言える。 つづく http://rio2016.5ch.net/test/read.
cgi/math/1566715025/618
619: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/09/02(月) 17:12:42.35 ID:7XXWjS4V >>618 つづき 1世紀頃、無名のインド人によって、初めて 0 を使った完全な位取り記数法が発明された。彼はソロバンとよく似たビーズ玉計算機で計算していたとき、数のない桁を 0 で書いて、ビーズ玉計算機上の各桁の数をそのまま並べて書き表すと、計算結果を素早く書き残せることに気づいた。 こうしてできた記数法は、数の記録と計算に一大革命をもたらす大発明となった。しかし、ここでの 0 は数としての 0 ではなく、空の桁
を表す目印に過ぎないものであった。 数としての 0 の概念は628年のインド人数学者ブラーマグプタによって見出され、現代の 0 の概念と近い計算法が考え出された。 19世紀、自然数の集合論的な定義がなされた。この定義によれば零を自然数に含める方がより便利である。集合論、論理学などの分野ではこの流儀に従うことが多い一方、数論などの分野では 0 を自然数には含めない流儀が好まれることが多い。 どちらの流儀をとるにしろ、通常は著作あるいは論文毎に定義や注釈で明示される。とくに混乱を避けたい場合には、0 から始まる自然数を指すために
非負整数、1 から始まる自然数を指すために正整数という用語を用いることもよくある。 つづく http://rio2016.5ch.net/test/read.cgi/math/1566715025/619
620: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/09/02(月) 17:13:19.10 ID:7XXWjS4V >>619 つづき 形式的な定義 自然数の公理 自然数がどんなものかは子供でも簡単に理解できるが、その定義は簡単ではない。自然数を初めに厳密に定義可能な公理として提示されたものにペアノの公理があり(1891年、ジュゼッペ・ペアノ)、以下のように自然数を定義することができる。 1 がある性質を満たし、a がある性質を満たせばその後者 suc(a) もその性質を満たすとき、すべての自然数はその性質を満たす。 最後の公理は、数
学的帰納法を正当化するものである。また、上の公理に現れる数字は 1 だけであり、自然数 1 からすべての自然数が作り出されることを意味している。一方、この公理の "1" を "0" に置き換えれば、自然数 0, 1, 2, 3, … を作り出せる。 集合論において標準的となっている自然数の構成は以下の通りである。 ・自然数は「後者関数について閉じていて、0 を含む M の部分集合の共通部分」として定義される。 無限集合の公理により集合 M が存在することが分かり、このように定義された集合がペアノの公理を満たすことが示される。
このとき、それぞれの自然数は、その数より小さい自然数全てを要素とする数の集合、となる。 このように定義された集合 n は丁度(通常の意味で)n 個の元を含むことになる。また、これは有限順序数の構成であり、(通常の意味で)n <= m が成り立つことと n が m の部分集合であることは同値である。 加法と乗法 加法、乗法とも (i) 0 に対する演算結果を定義し、(ii) ある自然数 b に対する演算結果を用いてその次の自然数 suc(b) に対する演算結果を定義する、と言う形式になっている。(i), (ii) をあわせることで、あらゆる自然数に対する演
算結果が一意に得られることになる(数学的帰納法)。 自然数は加法について、0 を単位元とする可換モノイドになっている。また、乗法についても、1 を単位元とする可換モノイドになっている。 (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1566715025/620
621: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/09/02(月) 17:36:36.44 ID:7XXWjS4V >>620 補足 >自然数は加法について、0 を単位元とする可換モノイドになっている。また、乗法についても、1 を単位元とする可換モノイドになっている。 言い逃れができないようにw(^^; https://ja.wikipedia.org/wiki/%E3%83%A2%E3%83%8E%E3%82%A4%E3%83%89 モノイド (抜粋) 数学、とくに抽象代数学における単系(たんけい、英: monoid; モノイド)はひとつの二項演算と単位元をもつ代数的構造である。モノイドは単位元をも
つ半群(単位的半群)であるので、半群論の研究対象の範疇に属する。 定義 集合 S とその上の二項演算 ・: S × S → S が与えられ、以下の条件 を満たすならば、組 (S, ・, e) をモノイドという。 2.3 可換モノイド 演算が可換であるようなモノイドは、可換モノイド (commutative monoid) という(稀にアーベルモノイド (abelian monoid) ともいう)。可換モノイドはしばしば二項演算の記号を "+" として加法的に書かれる。 https://ja.wikipedia.org/wiki/%E4%BB%A3%E6%95%B0%E7%9A%84%E6%A7%8B%E9%80%A0 代数的構造 代数的構造の例
・モノイド: 単位元を持つ半群 ・群: 任意の元が逆元を持つモノイド http://rio2016.5ch.net/test/read.cgi/math/1566715025/621
622: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/09/02(月) 17:45:22.49 ID:7XXWjS4V >>621 補足の補足 >言い逃れができないようにw(^^; まあ、要するに もし、>>620で構成された自然数 それは、一つずつ後者を作り続けた集合だが それがもし有限集合ならば 負数の集合を加えて、整数の集合を作ったとき 整数環にならんぜよw(^^ ∵ 演算の和(+)や積(・)について、有限集合なら閉じないから (参考) https://ja.wikipedia.org/wiki/%E6%95%B4%E6%95%B0%E7%92%B0 整数環 (抜粋) 環 Z は最も簡
単な整数環である[1]. http://rio2016.5ch.net/test/read.cgi/math/1566715025/622
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 380 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.029s