[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む76 (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
526(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/01(日)10:11 ID:dvD9YE7H(13/39) AAS
>>491 補足追加
> 4)このような、素朴な無限次元ベクトル空間で、2つのベクトルv1とv2との大きさを比較した
> ベクトルの大きさは、内積で定義する。一般に、内積は無限大に発散し、大小比較ができない!
同様のことを、時枝の決定番号(下記ご参照)について考えてみよう
1)
問題の数列
s = (s1,s2,s3 ,・・・,sd ,***)
代表の数列
r = (r1,r2,r3 ,・・・,rd ,***)
ここで、dの後の***の部分が一致しているとする
2)
差を作ると
s-r = (s-r1,s-r2,s-r3 ,・・・,s-rd ,0,0,0,・・・)
と、dの後の部分が0になる
3)
これは、丁度多項式環のd次多項式同様だ(下記)
そこで、多項式環からランダムに多項式を1つ取り出したらどうなるかを考える
多項式環の次元は可算無限であることに注意しよう(下記)
4)
さて、順に次元を大きくして考えていくとする
確率を考えるので、多項式の係数には、サイコロの目1〜6を入れるとする
1次多項式a0+a1xに対して、2次多項式a0+a1x+a2x^2を考えると、その場合の数の比は6倍
同様に
n次多項式a0+a1x・・+anx^n に対して、
n+1次多項式a0+a1x・・+an+1x^n+1を考えると、
場合の数の比は6倍
つづく
上下前次1-新書関写板覧索設栞歴
あと 476 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.024s