[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む76 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む76 http://rio2016.5ch.net/test/read.cgi/math/1566715025/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
499: 132人目の素数さん [sage] 2019/09/01(日) 08:37:59.10 ID:uj+Nfmst >>459 >「現代数学の確率変数を否定するんだ」 >その批判に、耐えられないでしょ いや、全然平気だけど、何か? だって実際、現代数学でも時枝問題の数列は 確率変数じゃなく定数だし 現代数学では選ぶ列の添数が確率変数ですから (完) http://rio2016.5ch.net/test/read.cgi/math/1566715025/499
500: 132人目の素数さん [sage] 2019/09/01(日) 08:42:17.03 ID:uj+Nfmst >>463 >すべての箱にπを入れるよう指示しそうしているところを見てしまった それ戦略じゃないですね 上記の情報なしにして もし開けた箱の中身が全部πだったら それだけで「開けた箱の中身は全部πだ!」 と決めつけますか? それが勝てる戦略だと証明できますか? 勝てる確率は1だと証明できますか? http://rio2016.5ch.net/test/read.cgi/math/1566715025/500
501: 132人目の素数さん [sage] 2019/09/01(日) 08:51:58.32 ID:uj+Nfmst >>466 >厳密な数学の証明がないというのが、Pruss氏、確率論の専門家さんと、私 「箱の中身を確率変数とするのが厳密だ」という数学の証明がないね 「確率論の専門家」と呼ばれる人は、 「”箱の中身を確率変数とする”なら 決定番号dがD以上の数列全体の集合が 非可測集合となるから確率が求められないね」 と云ったんじゃないのかい? 上記についてはその通りだけど 「時枝問題では”箱の中身を確率変数とする”から」 と云ってるのなら、そこは明らかな
誤解だね Pruss氏もRiddleの答えを、数列を確率変数とする場合に 拡大することはできない、という主旨で述べたのなら分かるが 非可測性だけでは、Riddleを否定できないし実際否定してないね だから数列を確率変数とせず定数とするなら、 Riddleも時枝記事も現代数学として否定できない これが答え http://rio2016.5ch.net/test/read.cgi/math/1566715025/501
502: 132人目の素数さん [sage] 2019/09/01(日) 08:57:06.02 ID:uj+Nfmst >>468 >ええ、”どんな実数を入れるかはまったく自由”なので >私は、サイコロ2つの目の和を、可算無限個ある.箱を入れました そうしたところで >これで、箱の中の数は、現代数学でいう確率変数になり、 >現代数学の確率変数の理論で扱えます と思うのが誤り 一度箱の中身に数を入れたら入れ替えしない これで、箱の中身は現代数学でも定数 現代数学の確率変数の理論の出番はない (時枝記事では、どの列を選ぶかが確率変数だが あまりにも初等的なことな
のでわざわざ言及するまでもない) 確率変数じゃなく定数なら、時枝さんは成立? じゃ、成立ですね! http://rio2016.5ch.net/test/read.cgi/math/1566715025/502
503: 132人目の素数さん [sage] 2019/09/01(日) 09:02:38.87 ID:uj+Nfmst >>473 >P(A)=1/2 の証明なんて不要 >なぜなら時枝解法は >P(C)=1/2 としか言ってないから その通りだね 2列を確率変数とした前提での確率1/2なんて主張してない 2列を定数とした前提での確率1/2を主張しているだけ Prussの主張は「2列を確率変数とするなら」正しいが 「2列を定数とする限り」無意味 実際、PrussはRiddleについては否定してない 否定しようがないからね http://rio2016.5ch.net/test/read.cgi/math/1566715025/503
504: 132人目の素数さん [] 2019/09/01(日) 09:07:58.99 ID:CU1S7ZwH >>489 >平たく言えば、確率空間が定義されれば、その後「確率」計算を行うために、確率変数を定義し、確率分布を定義していく >だから、普通に確率として扱える対象には、確率変数が定義できて、確率計算ができる それがおまえの云うところの「現代数学の確率変数」なら 時枝解法では Ω={1,...,100}, P(∀i∈Ω)=1/100 なのだが、何も問題無いやんw おまえはいったい何に対して言いがかりつけてるんだ? http://rio2016.5ch.net/test/read.cgi/math/1566715025/
504
505: 132人目の素数さん [sage] 2019/09/01(日) 09:08:50.71 ID:uj+Nfmst >>475 >定数を確率変数としてはいけないなんてことは無い。 どういう問題を設定してもよい、という意味なら正しい しかし 「時枝問題で、箱の中身を定数としても確率変数としてもよい」 という意味なら誤りだね 箱の中身が定数(つまり毎回の試行で箱の中身を一切入れ替えない)とするのと 箱の中身が確率変数(毎回の試行で箱の中身を入れ替える)とするのでは 問題が変わる 時枝記事では前者の問題について回答を与えている 後者についても同じ回答になるとい
うならそれは誤り なぜなら後者の場合非可測性により答えが出せないから >コイントスで回答者が回答するとき >裏か表かは確定している。つまり定数である。 定数の考え方が違うね 誰が回答する場合にも、箱の中身が同じであることが、定数の条件 >しかし回答者には分からないので確率変数としてもよい。 分からないから確率変数、というならそれは誤り 誰が回答する場合にも、箱の中身が同じであるなら 回答者が箱の中身を知らなくても定数 http://rio2016.5ch.net/test/read.cgi/math/1566715025/505
506: 132人目の素数さん [sage] 2019/09/01(日) 09:12:13.47 ID:uj+Nfmst >>476 >大学教程の確率論・確率過程論を学べば、可算無限個の確率変数を扱う 上記から >そうすれば、時枝の数列を、可算無限個の確率変数として扱えるから は云えない 時枝が無限列の各項を可算無限個の「定数」として設定した瞬間 いくら確率論・確率過程論を持ち出しても、 定数を確率変数に変えることはできない http://rio2016.5ch.net/test/read.cgi/math/1566715025/506
507: 132人目の素数さん [sage] 2019/09/01(日) 09:16:42.88 ID:uj+Nfmst >>477 >>6列から選ぶ列の番号(1から6)も根元事象 >>100列から選ぶ列の番号(1から100)も根元事象です >それで終わるなら、全然問題ないよ では全然問題ない それで終わりだから >「複数列の決定番号の大小」比較の確率計算のところの >可測性が問題視されています 数列が確率変数なら(つまり毎回の試行で箱の中身を入れ替えるなら) 非可測性により確率は求まらない しかし、数列は実際には定数なので(つまり毎回の試行で箱の中身は 入れ替
えないので)非可測性など出てこず確率が求まる Pruss氏がRiddleを否定できなかったのは、 数列が確率変数ではなく定数だったから 数列が定数のまま、列を選ぶところだけ 確率を導入した場合も否定しようがない http://rio2016.5ch.net/test/read.cgi/math/1566715025/507
508: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/09/01(日) 09:17:41.97 ID:dvD9YE7H ピエロちゃん、朝早くご苦労 >>497 >時枝記事で選択公理を前提しているから否定しないだけ >時枝記事で100列は確率変数でなく定数としているから >非可測性は出てこない それだけ 「時枝記事で100列は確率変数でなく定数としているから」 ギャップありまくり(^^ >>498 >逆に選択公理を認めないなら、代表が選べないから、時枝記事は成立しない 問題の100列についてだけ、100個の代表を選ぶことにした
どう? >つまり箱の中身は単なる初期設定の定数にすぎない >箱の中身にどんなものをいれるか自由だが、 >一旦入れたら二度と入れ替えない そういうこと 妄想でしょ? サイコロ1つで4を入れた。これ決まった数だが、確率変数です。確率1/6 サイコロ2つの和でを入れた。これ決まった数だが、確率変数です。 大小2つで、(1,3)、(3,1)、(2,2)の3通りで、確率1/12 [0,1] 上の一様分布(ランダムに 0 から 1 の間の実数を返すモデル)(>>485-486)なら、確率 「一旦入れたら二度と入れ替えない」とか当たり前で、確率変数の定義を誤解し
ているよ (なお、確率変数の定義は>>489な) >>499 >だって実際、現代数学でも時枝問題の数列は >確率変数じゃなく定数だし >現代数学では選ぶ列の添数が確率変数ですから 面白い冗談だな >>500 それ、つっこんでも仕方ないよ (>>463より)「しかし、勝てる特異な例を作ったところで、数学の理論になっていませんね(あなたに同じ)」 ってこと。誤読しているよ >>501 > 「箱の中身を確率変数とするのが厳密だ」という数学の証明がないね 証明はいらない 「まったく自由」(下記)だから、出題者の
権利です つまり、サイコロの目2つの和を、箱に入れる これで、i.i.d. 独立同分布(>>472ご参照) どの箱の数も確率変数で扱える。それだけですw 参考(>>350より) スレ47 https://rio2016.5ch.net/test/read.cgi/math/1512046472/ 時枝問題(数学セミナー201511月号の記事) 「どんな実数を入れるかはまったく自由, もちろんでたらめだって構わない.」 http://rio2016.5ch.net/test/read.cgi/math/1566715025/508
509: 132人目の素数さん [sage] 2019/09/01(日) 09:20:29.41 ID:uj+Nfmst >>479 >「時枝では確率変数が固定され、それは定数になるのだ」 この言い方は間違ってるね 「時枝記事では箱の中身は定数」 これが正しい言い方 時枝記事では箱の中身は確率変数 つまり、箱の中身は試行毎に入れ替える という記述があるなら示してほしい そんな記述はどこにもないから示しようがない筈 http://rio2016.5ch.net/test/read.cgi/math/1566715025/509
510: 132人目の素数さん [sage] 2019/09/01(日) 09:22:12.32 ID:IVtPZNby >>495 > 「数当てに失敗する箱は100個の候補の内の2個以上になることはない」 > に至るまでに、 > 大きなギャップがあるよね ないですよ > どの列を選んでも選ばなかった99列の箱を全て開けることから これで終わっているよ s1, s2, s3, ... , sn, ... が出題され100列に分けたとする 袋の中に完全代表系が1組入っている まずはじめに100列から1列選ぶ (Ω = {1, 2, ... , 100}) 選ばなかった99列を開けて袋の中の代表元と比較する 選ばなかった9
9列の各1番目 各列の代表元と一致する個数は99個中0個 選ばなかった99列の各2番目 各列の代表元と一致する個数は99個中0個 ... 以下同様に繰り返していくと各列の代表元と一致する個数は増加していくことになるが 一致する個数がk番目で99個中99個になったら選んだ列のk番目の箱で数当てを行う 選んだ列のk番目の箱より後ろを開けて同値類を決定しその代表元から数当てで答える数を得る (選ばれる箱については改めて>>478を見てみよ) だから>>490 > 時枝記事はΩ = {1, 2, ... , 100}でいいのでΩ = {d1, d2, ... , d100}ではない h
ttp://rio2016.5ch.net/test/read.cgi/math/1566715025/510
511: 132人目の素数さん [] 2019/09/01(日) 09:24:00.76 ID:CU1S7ZwH >>491 >4)このような、素朴な無限次元ベクトル空間で、2つのベクトルv1とv2との大きさを比較した > ベクトルの大きさは、内積で定義する。一般に、内積は無限大に発散し、大小比較ができない! 時枝解法の大小比較の対象は自然数の値を持つ決定番号であり、自然数全体の集合 N は大小関係について全順序集合なので却下w このバカはなんで無限次元ベクトル空間の話なんて持ち出したんだ? バカの考えることは意味不明過ぎw http://rio2016.5ch.net/test/read.
cgi/math/1566715025/511
512: 132人目の素数さん [sage] 2019/09/01(日) 09:27:16.25 ID:uj+Nfmst >>482 >第一列の箱が当たる確率は? 時枝記事の問が上記の通りで 「s~1の決定番号が他の列の決定番号どれよりも 大きい確率は1/100に過ぎない」 と書いてあったとした場合、誤りだね 箱の中身が確率変数なら非可測性により確率計算ができない 箱の中身が定数であった場合、そもそも 1. s~1の決定番号が他の列の決定番号どれよりも 大きい場合 2. 1.以外の場合 に分かれるだけで、 1.の場合当たる確率0 2.の場合当たる確率1 ということになるだ
け http://rio2016.5ch.net/test/read.cgi/math/1566715025/512
513: 132人目の素数さん [] 2019/09/01(日) 09:28:42.07 ID:CU1S7ZwH >>494 >残念だけどこれが非自明. >hに可測性が保証されないので,d_Xとd_Yの可測性が保証されない >そのためd_Xとd_Yがそもそも分布を持たない可能性すらあるのでP(d_X≧d_Y)≧1/2とはいえないだろう 却下 なぜなら、誰も P(d_X≧d_Y)≧1/2 とは言ってないから そうではなく、P(d_X,d_Yのいずれかをランダムに選択した方≧他方)≧1/2 と言っている これはランダムの定義通りで否定し様が無い サル学習能力無さ過ぎw http://rio2016.5ch.net/test/read.cgi/
math/1566715025/513
514: 132人目の素数さん [sage] 2019/09/01(日) 09:29:01.13 ID:IVtPZNby >>508 > 出題者の権利です 出題者がスレ主のお望みの方法で数列を作ったとしても逆は言えないんです 回答者は他の方法で数列を作ったと仮定しても数列が同じなら良いのです 回答者の権利です http://rio2016.5ch.net/test/read.cgi/math/1566715025/514
515: 132人目の素数さん [sage] 2019/09/01(日) 09:37:03.75 ID:uj+Nfmst >>485 >100列に対応する自然数d1,d2,・・・,d100 >これが、 >ランダムに区間[0,1]から選んだ一様な数の数当ての確率 >と同じになる証明がないですよ そりゃ当然ないよw だって時枝記事は 「ランダムに区間[0,1]から選んだ一様な数の数当ての確率」 じゃないもの 時枝記事では、箱の中身は定数 だから 「ランダムに区間[0,1]から選んだ一様な数」 なんて設定はない せいぜい 「箱の中身は区間[0,1]の要素」 というだけで、その要素の選定に一様乱数を使おう
がなにしようが 一旦箱を閉めてしまって、中身を入れ替えないのであれば定数 「数の数当ての確率」というところすら実はおかしい 時枝記事では、そもそも当てる箱を固定せず選ばせてるから 「この箱の中身を他の箱の中身の情報だけから当てろ」 という問いなら「数の数当ての確率」といってもいいがね 要するに二つの別々の問題と同じだと思いこむ誤解があるんだよ http://rio2016.5ch.net/test/read.cgi/math/1566715025/515
516: 132人目の素数さん [sage] 2019/09/01(日) 09:41:56.27 ID:uj+Nfmst >>489 >確率空間が定義されれば、その後「確率」計算を行うために、 >確率変数を定義し、確率分布を定義していく >だから、普通に確率として扱える対象には、 >確率変数が定義できて、確率計算ができる 時枝記事での確率空間は{1,…,100}と各点に1/100の重みを与えた測度だよ 数列全体の空間とのその上の測度、ではないな http://rio2016.5ch.net/test/read.cgi/math/1566715025/516
517: 132人目の素数さん [sage] 2019/09/01(日) 09:43:10.33 ID:uj+Nfmst >>491 >ヒルベルト空間を知っているだろ? 知っていても時枝記事では使わないよ 下手な考え休むに似たり http://rio2016.5ch.net/test/read.cgi/math/1566715025/517
518: 132人目の素数さん [] 2019/09/01(日) 09:44:11.68 ID:CU1S7ZwH >>494 >この、”そもそも分布を持たない可能性すらある”は、 >単にビタリの意味の非可測だけではなく >”無限大に発散”する非可測の可能性をも、含意していると思うよ(^^ 却下 なぜなら、時枝解法での大小比較の対象である決定番号は必ず自然数であり、∞にはならない(∞は自然数ではない)から。 選択公理を仮定すれば商射影R^N→R^N/〜の切断の存在が保証されるので、決定番号の定義の正当性が保証される。 決定番号はその定義により必ず自然数
である。 サル畜生が理解していないだけ。 http://rio2016.5ch.net/test/read.cgi/math/1566715025/518
519: 132人目の素数さん [] 2019/09/01(日) 09:47:03.06 ID:CU1S7ZwH >>495 >そうしないと、時枝記事の面白さは、分かりませんよ!(^^ なに分かったふりしてんの? サル畜生の悪い癖だ http://rio2016.5ch.net/test/read.cgi/math/1566715025/519
520: 132人目の素数さん [sage] 2019/09/01(日) 09:47:56.73 ID:uj+Nfmst >>496 >時枝さんの”時枝記事はΩ = {1, 2, ... , 100}でいい”というところが、 >プロ数学者から批判されている 厳密な、数学の証明がない >>501にも書いたが 「箱の中身を確率変数とするのが厳密だ」 というのが誤解 プロ数学者も問題読み違えることは多々あるから 「プロがいったから100%正しい」 と思うのも誤り http://rio2016.5ch.net/test/read.cgi/math/1566715025/520
521: 132人目の素数さん [] 2019/09/01(日) 09:50:15.83 ID:CU1S7ZwH >>496 >そして、時枝さんの”時枝記事はΩ = {1, 2, ... , 100}でいい”というところが、プロ数学者から批判されている サルの妄想w 「さて, 1〜100 のいずれかをランダムに選ぶ.」から Ω = {1, 2, ... , 100} を読み取れない池沼は数学諦めろw http://rio2016.5ch.net/test/read.cgi/math/1566715025/521
522: 132人目の素数さん [] 2019/09/01(日) 09:57:39.10 ID:CU1S7ZwH >>496 >そして、時枝さんの”時枝記事はΩ = {1, 2, ... , 100}でいい”というところが、プロ数学者から批判されている サルの言うプロ数学者って誰だよ? まさか数学を諦めて哲学に転向したPrussじゃないよな?w さらにPrussも勝率99/100以上を認めてるしw For each fixed opponent strategy, if i is chosen uniformly independently of that strategy (where the "independently" here isn't in the probabilistic sense), we win with probability a
t least (n-1)/n. That's right. "if i is chosen uniformly" が「さて, 1〜100 のいずれかをランダムに選ぶ. 」なw サルは数学も英語もできないw http://rio2016.5ch.net/test/read.cgi/math/1566715025/522
523: 132人目の素数さん [] 2019/09/01(日) 10:01:01.43 ID:CU1S7ZwH 数学も英語もできない工業高校卒のくせに阪大卒と学歴詐称するイカサマザル http://rio2016.5ch.net/test/read.cgi/math/1566715025/523
524: 132人目の素数さん [sage] 2019/09/01(日) 10:01:36.29 ID:uj+Nfmst >>508 >「時枝記事で100列は確率変数でなく定数としているから」 >ギャップありまくり ギャップは君の誤解によるものであるから 君が「100列は定数」と受け入れれば ギャップはなくなるよ >問題の100列についてだけ、100個の代表を選ぶことにしたらどう? それは無理だね 回答者は100列の中身は知らないから いっとくけど中身を知らないことと、 中身が確率変数であることは同値でないよ 数学を知らない素朴な一般人はよくそういう誤解をするけれど
も 数学を学んだことがある人はそういう誤解はしない >>箱の中身にどんなものをいれるか自由だが、 >>一旦入れたら二度と入れ替えない そういうこと >妄想でしょ? 事実です >「一旦入れたら二度と入れ替えない」とか当たり前で、 >確率変数の定義を誤解しているよ 誤解してるのは君 確率変数なら、試行ごとに入れ替わる 入れ替わらないのなら変数じゃなく定数 君、リンク張った文書の中身読んでないでしょ それじゃ分かるわけないよ >>「箱の中身を確率変数とするのが厳密だ」という数学の証明がないね >証明はいらない いるよ 問
題が違ってしまうんだから 問題の文章から箱の中身を確率変数となることを示せないなら 君が問題を読み間違ったということ >「まったく自由」だから、出題者の権利です 出題者が定数を決める自由があるというだけのこと >つまり、サイコロの目2つの和を、箱に入れる >これで、i.i.d. 独立同分布 いいえ 箱の中身を決めた瞬間、どの試行でも同じ値だから 「i.i.d. 独立同分布」なんて無意味です 試行毎に中身が変わる場合に 「i.i.d. 独立同分布」が意味を持つのです http://rio2016.5ch.net/test/read.cgi/math/1566715025/524
525: 132人目の素数さん [sage] 2019/09/01(日) 10:07:56.58 ID:uj+Nfmst 本日の収穫 >>508 >「一旦入れたら二度と入れ替えない」とか当たり前 >>241の「6コ中の最大値である確率は、1/6 」に次ぐ大収穫 http://rio2016.5ch.net/test/read.cgi/math/1566715025/525
526: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/09/01(日) 10:11:27.63 ID:dvD9YE7H >>491 補足追加 > 4)このような、素朴な無限次元ベクトル空間で、2つのベクトルv1とv2との大きさを比較した > ベクトルの大きさは、内積で定義する。一般に、内積は無限大に発散し、大小比較ができない! 同様のことを、時枝の決定番号(下記ご参照)について考えてみよう 1) 問題の数列 s = (s1,s2,s3 ,・・・,sd ,***) 代表の数列 r = (r1,r2,r3 ,・・・,rd ,***) ここで、dの後の***の部分が一致してい
るとする 2) 差を作ると s-r = (s-r1,s-r2,s-r3 ,・・・,s-rd ,0,0,0,・・・) と、dの後の部分が0になる 3) これは、丁度多項式環のd次多項式同様だ(下記) そこで、多項式環からランダムに多項式を1つ取り出したらどうなるかを考える 多項式環の次元は可算無限であることに注意しよう(下記) 4) さて、順に次元を大きくして考えていくとする 確率を考えるので、多項式の係数には、サイコロの目1〜6を入れるとする 1次多項式a0+a1xに対して、2次多項式a0+a1x+a2x^2を考えると、その場合の数の比は6倍 同様に n次多項式a0+a1x・・+anx^n
に対して、 n+1次多項式a0+a1x・・+an+1x^n+1を考えると、 場合の数の比は6倍 つづく http://rio2016.5ch.net/test/read.cgi/math/1566715025/526
527: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/09/01(日) 10:12:41.85 ID:dvD9YE7H >>526 つづき 5) このように、係数をサイコロの目1〜6に制限しても、多項式の次数が1上がる毎に、場合の数は6倍になる 多項式環の次元は可算無限であることを想起すると、「多項式環から”ランダムに”1つ多項式を取り出す」という考えは (確率論としては) 場合の数が指数関数的に発散するので、定義不能であることがわかる 6) 上記は、係数をサイコロの目1〜6に制限した場合だが、係数を実数R全体に拡大すれば、さら
に発散はひどくなる 7) 上記は、”ランダムに”という確率を考えるから問題なのであって、 代数学を考えるときは、”ある意図”で多項式を取り出すので(まあ選択関数みたいなものよw)、問題は生じない 8) お分かりのように、時枝の決定番号dの大小比較は、 「多項式環から”ランダムに”多項式を複数取り出して、その次数の大小を比較する」問題に置き換えることができ (確率論としては) ”d次多項式の数が、指数関数的に発散するので、この大小比較の確率計算は不能”という結論です よって、時枝さんの手法は不成立です! つづく http://rio2
016.5ch.net/test/read.cgi/math/1566715025/527
528: 132人目の素数さん [] 2019/09/01(日) 10:12:46.00 ID:CU1S7ZwH >>453 >普通の数学者は、選択公理下での非可測性を問題視するが >おサルは、逆に、選択公理を万能視して、非可測性をスルーなんだ 何度説明すれば理解するのか、本当に物覚えの悪いサルだ 誰も P(d1≧d2)≧1/2 とは言ってない。P(d1,d2のいずれかをランダムに選んだ方≧他方)≧1/2 と言っている。 後者は非可測性はまったく関係無く、またランダムの定義に完全に合致しており否定し様が無い。 http://rio2016.5ch.net/test/read.cgi/math/1566715025/528
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 474 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.020s