[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む76 (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
395(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/30(金)22:48 ID:exryDrPV(16/20) AAS
>>391
(引用開始)
おサル、
「箱の中のサイコロの目の分布なんか
考える必要ないんだって」か
(引用終り)
センター試験 数学II・数学B 2017年度 第5問
確率変数 Wと、連続型確率変数 Xとが出題されました
おサルの確率計算は、だめだね
おサルの確率計算では、センター試験解けないw(^^
外部リンク:math.nakaken88.com
なかけんの数学ノート
(抜粋)
センター試験 数学II・数学B 2017年度 第5問 解説
2017年1月16日
以下の問題を解答するにあたっては、必要に応じて29ページの正規分布表を用いてもよい。
(1) 1回の試行において、事象 A の起こる確率が p 、起こらない確率が
1−pであるとする。
この試行を n 回繰り返すとき、事象 A の起こる回数を W とする。
確率変数 W の平均(期待値) m が 1216/27 、
標準偏差 σ が 152/27 であるとき、
n=[アイウ] 、 p=[エ]/[オカ]
である。
(3) 連続型確率変数 X のとり得る値 x の範囲が
s≦x≦t で、確率密度関数が
f(x)
のとき、 X の平均
E(X)
は次の式で与えられる。
考え方
独立試行の平均や分散を答える問題はよくありますが、(1)は逆に平均などから試行回数と確率を求める問題です。公式が頭に入っていれば、連立方程式から求めることができます。
(2)は正規分布で近似して確率を求める問題で、センターではよく出る内容です。正規分布表がどこの確率を表しているかに注意して計算します。
(3)は珍しく連続型の確率変数です。積分の計算が少し難しいです。
上下前次1-新書関写板覧索設栞歴
あと 607 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.022s