[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む76 (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
368(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/30(金)15:52 ID:yTBVukD3(10/11) AAS
>>355
>それ(箱の中身は定数)って、箱が有限個のときに、確率計算できなくなるぜw(下記)
おサルの確率論
確率変数がないんだってさw(^^
笑えるわ、高校以下確定だな、アホやなw
外部リンク:mathtrain.jp
高校数学の美しい物語
最終更新:2015/11/06
確率密度関数の意味と具体例
連続型確率変数および確率密度関数の話です。多くの人は高校では習いませんが,数B(旧課程では数C)の教科書に載っています。理系なら知っておきたい話題。
連続型確率変数
通常,高校で扱う確率変数はとびとびの値しか取りません。例えば,サイコロの出る目を X とすると,X がとりうる値は 1 から 6 までの 6 通りです。このような確率変数を離散型確率変数と言います。
しかし,確率変数のとりうる値が連続的なものも考えないといろいろ不便です、例えば,0 以上 1 以下の乱数を一様ランダムに出力するような装置を考えると,その出力 X がとりうる値は連続的に分布します。
例えば,サイコロの例だと P(X=1)=16 などと書くことで確率分布を表すことができます。しかし,連続型確率変数に対しては離散型のときと異なり「 X=a となる確率」には(多くの場合)意味がありません。
なぜなら,連続分布の場合,特定の値にピッタリ一致する確率は 0 だからです。例えば,上の乱数の例で x=0.1 が出力される確率は 0 です。本当にランダムなら 0.1 からほんの少しはズレるはずです。
確率密度関数の定義と意味
連続分布の場合,特定の値を取る確率に意味がなくても幅を持たせて「 a?X?b となる確率」を考えればこの問題は解消されます。例えば一様乱数の例では「 0.1 となる確率は 0 だ」と言っても意味がありませんが,「 0.09?X?0.11 となる確率は 0.02 だ」と言えば確率分布の性質を反映させられます。
そこで,連続型確率変数の分布を表すために確率密度関数というものが使われます。
上下前次1-新書関写板覧索設栞歴
あと 634 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.013s