[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む76 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
497(1): 2019/09/01(日)08:26 ID:uj+Nfmst(1/51) AAS
>>453
>普通の数学者は、選択公理下での非可測性を問題視するが
非可測集合の存在は不都合ではあるが
測度自体を否定するものではない
それが普通の数学者の認識
>逆に、選択公理を万能視して、非可測性をスルーなんだ
時枝記事で選択公理を前提しているから否定しないだけ
時枝記事で100列は確率変数でなく定数としているから
非可測性は出てこない それだけ
498(1): 2019/09/01(日)08:33 ID:uj+Nfmst(2/51) AAS
>>456
>(選択公理により)代表系の存在が保証されると言ってるだけ
逆に選択公理を認めないなら、代表が選べないから、時枝記事は成立しない
それだけ
>確率論の専門家は、時枝解法の確率がP(A)だと誤解しているので、
>非可測性をスルーできないと言った
もし、毎回の試行で箱の中身が変わるのであれば
箱の中身は確率変数になるから、非可測性により
確率は求まらない
しかし、そもそも時枝記事はそんな前提はない
毎回の試行で箱の中身が変わるのであれば、
当然箱の中身の分布について記載するが
そんな記載はどこにもない
つまり箱の中身は単なる初期設定の定数にすぎない
箱の中身にどんなものをいれるか自由だが、
一旦入れたら二度と入れ替えない そういうこと
499(1): 2019/09/01(日)08:37 ID:uj+Nfmst(3/51) AAS
>>459
>「現代数学の確率変数を否定するんだ」
>その批判に、耐えられないでしょ
いや、全然平気だけど、何か?
だって実際、現代数学でも時枝問題の数列は
確率変数じゃなく定数だし
現代数学では選ぶ列の添数が確率変数ですから
(完)
500(1): 2019/09/01(日)08:42 ID:uj+Nfmst(4/51) AAS
>>463
>すべての箱にπを入れるよう指示しそうしているところを見てしまった
それ戦略じゃないですね
上記の情報なしにして
もし開けた箱の中身が全部πだったら
それだけで「開けた箱の中身は全部πだ!」
と決めつけますか?
それが勝てる戦略だと証明できますか?
勝てる確率は1だと証明できますか?
501(2): 2019/09/01(日)08:51 ID:uj+Nfmst(5/51) AAS
>>466
>厳密な数学の証明がないというのが、Pruss氏、確率論の専門家さんと、私
「箱の中身を確率変数とするのが厳密だ」という数学の証明がないね
「確率論の専門家」と呼ばれる人は、
「”箱の中身を確率変数とする”なら
決定番号dがD以上の数列全体の集合が
非可測集合となるから確率が求められないね」
と云ったんじゃないのかい?
上記についてはその通りだけど
「時枝問題では”箱の中身を確率変数とする”から」
と云ってるのなら、そこは明らかな誤解だね
Pruss氏もRiddleの答えを、数列を確率変数とする場合に
拡大することはできない、という主旨で述べたのなら分かるが
非可測性だけでは、Riddleを否定できないし実際否定してないね
だから数列を確率変数とせず定数とするなら、
Riddleも時枝記事も現代数学として否定できない
これが答え
502: 2019/09/01(日)08:57 ID:uj+Nfmst(6/51) AAS
>>468
>ええ、”どんな実数を入れるかはまったく自由”なので
>私は、サイコロ2つの目の和を、可算無限個ある.箱を入れました
そうしたところで
>これで、箱の中の数は、現代数学でいう確率変数になり、
>現代数学の確率変数の理論で扱えます
と思うのが誤り
一度箱の中身に数を入れたら入れ替えしない
これで、箱の中身は現代数学でも定数
現代数学の確率変数の理論の出番はない
(時枝記事では、どの列を選ぶかが確率変数だが
あまりにも初等的なことなのでわざわざ言及するまでもない)
確率変数じゃなく定数なら、時枝さんは成立?
じゃ、成立ですね!
503: 2019/09/01(日)09:02 ID:uj+Nfmst(7/51) AAS
>>473
>P(A)=1/2 の証明なんて不要
>なぜなら時枝解法は
>P(C)=1/2 としか言ってないから
その通りだね
2列を確率変数とした前提での確率1/2なんて主張してない
2列を定数とした前提での確率1/2を主張しているだけ
Prussの主張は「2列を確率変数とするなら」正しいが
「2列を定数とする限り」無意味
実際、PrussはRiddleについては否定してない
否定しようがないからね
505: 2019/09/01(日)09:08 ID:uj+Nfmst(8/51) AAS
>>475
>定数を確率変数としてはいけないなんてことは無い。
どういう問題を設定してもよい、という意味なら正しい
しかし
「時枝問題で、箱の中身を定数としても確率変数としてもよい」
という意味なら誤りだね
箱の中身が定数(つまり毎回の試行で箱の中身を一切入れ替えない)とするのと
箱の中身が確率変数(毎回の試行で箱の中身を入れ替える)とするのでは
問題が変わる
時枝記事では前者の問題について回答を与えている
後者についても同じ回答になるというならそれは誤り
なぜなら後者の場合非可測性により答えが出せないから
>コイントスで回答者が回答するとき
>裏か表かは確定している。つまり定数である。
定数の考え方が違うね
誰が回答する場合にも、箱の中身が同じであることが、定数の条件
>しかし回答者には分からないので確率変数としてもよい。
分からないから確率変数、というならそれは誤り
誰が回答する場合にも、箱の中身が同じであるなら
回答者が箱の中身を知らなくても定数
506: 2019/09/01(日)09:12 ID:uj+Nfmst(9/51) AAS
>>476
>大学教程の確率論・確率過程論を学べば、可算無限個の確率変数を扱う
上記から
>そうすれば、時枝の数列を、可算無限個の確率変数として扱えるから
は云えない
時枝が無限列の各項を可算無限個の「定数」として設定した瞬間
いくら確率論・確率過程論を持ち出しても、
定数を確率変数に変えることはできない
507: 2019/09/01(日)09:16 ID:uj+Nfmst(10/51) AAS
>>477
>>6列から選ぶ列の番号(1から6)も根元事象
>>100列から選ぶ列の番号(1から100)も根元事象です
>それで終わるなら、全然問題ないよ
では全然問題ない
それで終わりだから
>「複数列の決定番号の大小」比較の確率計算のところの
>可測性が問題視されています
数列が確率変数なら(つまり毎回の試行で箱の中身を入れ替えるなら)
非可測性により確率は求まらない
しかし、数列は実際には定数なので(つまり毎回の試行で箱の中身は
入れ替えないので)非可測性など出てこず確率が求まる
Pruss氏がRiddleを否定できなかったのは、
数列が確率変数ではなく定数だったから
数列が定数のまま、列を選ぶところだけ
確率を導入した場合も否定しようがない
509: 2019/09/01(日)09:20 ID:uj+Nfmst(11/51) AAS
>>479
>「時枝では確率変数が固定され、それは定数になるのだ」
この言い方は間違ってるね
「時枝記事では箱の中身は定数」
これが正しい言い方
時枝記事では箱の中身は確率変数
つまり、箱の中身は試行毎に入れ替える
という記述があるなら示してほしい
そんな記述はどこにもないから示しようがない筈
512: 2019/09/01(日)09:27 ID:uj+Nfmst(12/51) AAS
>>482
>第一列の箱が当たる確率は?
時枝記事の問が上記の通りで
「s~1の決定番号が他の列の決定番号どれよりも
大きい確率は1/100に過ぎない」
と書いてあったとした場合、誤りだね
箱の中身が確率変数なら非可測性により確率計算ができない
箱の中身が定数であった場合、そもそも
1. s~1の決定番号が他の列の決定番号どれよりも 大きい場合
2. 1.以外の場合
に分かれるだけで、
1.の場合当たる確率0
2.の場合当たる確率1
ということになるだけ
515: 2019/09/01(日)09:37 ID:uj+Nfmst(13/51) AAS
>>485
>100列に対応する自然数d1,d2,・・・,d100
>これが、
>ランダムに区間[0,1]から選んだ一様な数の数当ての確率
>と同じになる証明がないですよ
そりゃ当然ないよw
だって時枝記事は
「ランダムに区間[0,1]から選んだ一様な数の数当ての確率」
じゃないもの
時枝記事では、箱の中身は定数
だから
「ランダムに区間[0,1]から選んだ一様な数」
なんて設定はない
せいぜい
「箱の中身は区間[0,1]の要素」
というだけで、その要素の選定に一様乱数を使おうがなにしようが
一旦箱を閉めてしまって、中身を入れ替えないのであれば定数
「数の数当ての確率」というところすら実はおかしい
時枝記事では、そもそも当てる箱を固定せず選ばせてるから
「この箱の中身を他の箱の中身の情報だけから当てろ」
という問いなら「数の数当ての確率」といってもいいがね
要するに二つの別々の問題と同じだと思いこむ誤解があるんだよ
516: 2019/09/01(日)09:41 ID:uj+Nfmst(14/51) AAS
>>489
>確率空間が定義されれば、その後「確率」計算を行うために、
>確率変数を定義し、確率分布を定義していく
>だから、普通に確率として扱える対象には、
>確率変数が定義できて、確率計算ができる
時枝記事での確率空間は{1,…,100}と各点に1/100の重みを与えた測度だよ
数列全体の空間とのその上の測度、ではないな
517(1): 2019/09/01(日)09:43 ID:uj+Nfmst(15/51) AAS
>>491
>ヒルベルト空間を知っているだろ?
知っていても時枝記事では使わないよ
下手な考え休むに似たり
520: 2019/09/01(日)09:47 ID:uj+Nfmst(16/51) AAS
>>496
>時枝さんの”時枝記事はΩ = {1, 2, ... , 100}でいい”というところが、
>プロ数学者から批判されている 厳密な、数学の証明がない
>>501にも書いたが
「箱の中身を確率変数とするのが厳密だ」
というのが誤解
プロ数学者も問題読み違えることは多々あるから
「プロがいったから100%正しい」
と思うのも誤り
524: 2019/09/01(日)10:01 ID:uj+Nfmst(17/51) AAS
>>508
>「時枝記事で100列は確率変数でなく定数としているから」
>ギャップありまくり
ギャップは君の誤解によるものであるから
君が「100列は定数」と受け入れれば
ギャップはなくなるよ
>問題の100列についてだけ、100個の代表を選ぶことにしたらどう?
それは無理だね
回答者は100列の中身は知らないから
いっとくけど中身を知らないことと、
中身が確率変数であることは同値でないよ
数学を知らない素朴な一般人はよくそういう誤解をするけれども
数学を学んだことがある人はそういう誤解はしない
>>箱の中身にどんなものをいれるか自由だが、
>>一旦入れたら二度と入れ替えない そういうこと
>妄想でしょ?
事実です
>「一旦入れたら二度と入れ替えない」とか当たり前で、
>確率変数の定義を誤解しているよ
誤解してるのは君
確率変数なら、試行ごとに入れ替わる
入れ替わらないのなら変数じゃなく定数
君、リンク張った文書の中身読んでないでしょ
それじゃ分かるわけないよ
>>「箱の中身を確率変数とするのが厳密だ」という数学の証明がないね
>証明はいらない
いるよ 問題が違ってしまうんだから
問題の文章から箱の中身を確率変数となることを示せないなら
君が問題を読み間違ったということ
>「まったく自由」だから、出題者の権利です
出題者が定数を決める自由があるというだけのこと
>つまり、サイコロの目2つの和を、箱に入れる
>これで、i.i.d. 独立同分布
いいえ 箱の中身を決めた瞬間、どの試行でも同じ値だから
「i.i.d. 独立同分布」なんて無意味です
試行毎に中身が変わる場合に 「i.i.d. 独立同分布」が意味を持つのです
525(1): 2019/09/01(日)10:07 ID:uj+Nfmst(18/51) AAS
本日の収穫
>>508
>「一旦入れたら二度と入れ替えない」とか当たり前
>>241の「6コ中の最大値である確率は、1/6 」に次ぐ大収穫
532(2): 2019/09/01(日)10:23 ID:uj+Nfmst(19/51) AAS
「「一旦入れたら二度と入れ替えない」とか当たり前 」
であるなら、選ぶ数列の範囲は100列の中だけで数列全体ではない
「6コ中の最大値である確率は、1/6 」は上記の考えと符合する
もし仮に
1.そもそも回答者がランダムに数列99個を
”数列全体から”選んで決定番号を知り
その中の最大値Dを知る
2.その上で回答者がさらに
数列1コを”数列全体から”選んで、
D+1番目から後ろの項を知って、
その列の代表元を知る
という設定だとした場合には
「2で選ばれる数列の決定番号dがD以下である確率」
は非可測性により求まらない
しかし時枝問題は
0.あらかじめ100列を決める
1.回答者がランダムに数列99個を
”100列から”選んで決定番号を知り
その中の最大値Dを知る
2.その上で回答者が残りの数列1コを選んで、
D+1番目から後ろの項を知って、
その列の代表元を知る
というものだから、非可測性は出てこず
単に「100列のうち決定番号が単独最大値でない列を選ぶ確率」
を考えればよい
533: 2019/09/01(日)10:24 ID:uj+Nfmst(20/51) AAS
>>530
>なにを妄想して、収穫とか宣うのかね?
>>532に書きました
534: 2019/09/01(日)10:27 ID:uj+Nfmst(21/51) AAS
>>531
謙虚になろう
自分の誤りを認めることは恥ずかしいことじゃない
誤りから目をそらすことこそ恥ずかしいことなんだ
どっかの国の首相とか閣僚みたいになっちゃダメだよw
535: 2019/09/01(日)10:29 ID:uj+Nfmst(22/51) AAS
>>532
時枝問題でいえば、
「0.あらかじめ100列を決める 」
のところは毎回の試行ではやり直さなない
ここがポイント
「それじゃ自明じゃん」という人は沢山いるかもしれんが仕方ない
536: 2019/09/01(日)10:31 ID:uj+Nfmst(23/51) AAS
>>531
>今日は日曜だ
平日の昼間に職場からこんなところに書くのは
あきらかにネット依存症なので治療したほうがいいよ
だれからも咎められないからいいと思ったら、人生終わり
537: 2019/09/01(日)10:45 ID:uj+Nfmst(24/51) AAS
調子ぶっこいて”●●記事はマチガッテル”とか
トンデモなこといって撤回したいとき
動画リンク[YouTube]
このコ天才w
539: 2019/09/01(日)11:18 ID:uj+Nfmst(25/51) AA×
>>472

540: 2019/09/01(日)11:20 ID:uj+Nfmst(26/51) AA×
>>472

550: 2019/09/01(日)14:06 ID:uj+Nfmst(27/51) AAS
>>546
>・99列の同値類が決まる
>・そこで、初めて99列の同値類を作る
>・作った同値類から、99個の代表を決める
>・99個の同値類から、99個の決定番号を決める
これじゃだめね
>・残り1列のD+1から先を開け、同値類を決め、その後同値類を作り、代表を選
これじゃだめね
全ての数列に対してあらかじめ同値類に分割され
同値類の代表が定まっており、決定番号が決まっている
それが前提
551: 2019/09/01(日)14:08 ID:uj+Nfmst(28/51) AAS
>>546を読む限り、選択公理も理解してなかったのかと気づいてガッカリだね
これで
>>472
>最後は、おれの勝ちだから
って笑わせるぜwww
552: 2019/09/01(日)14:11 ID:uj+Nfmst(29/51) AAS
>>472
>最後は、おれの勝ちだから
誇大妄想(こだいもうそう、Grandiose delusions, GD)とは
妄想のサブタイプの一つであり、様々な精神障害患者に生じ、
躁状態にある双極性障害の2/3、統合失調症の1/2、妄想性障害の1/2、
薬物乱用者の多くに確認されている。
誇大妄想は、己が有名で、全能で、裕福で、何かの力に満ちている
という幻想的な信念を特徴としている。
その妄想は一般的に幻想的であり、
典型的には宗教的、SF、超自然的なテーマを持っている。
迫害妄想や幻聴幻覚とは対照的に、
誇大妄想に関する研究は比較的不足している。
健康な人の約10%が誇大的な考えを経験しているが、
誇大妄想の診断基準を完全には満たしていない。
553: 2019/09/01(日)14:13 ID:uj+Nfmst(30/51) AAS
>>472
>最後は、おれの勝ちだから
DSM-IV-TRの妄想性障害診断基準によれば、
誇大型の症状には、以下についての
非常に誇張された考えが挙げられている。
自己価値
力
知識
アイデンティティ
神性または有名人との特別な関係
例えば、自分の力や権威について架空の信念を持っている患者は、
自分は王族のように扱われるべき支配的な君主である
と信じていることがある。
誇大妄想とそれと関連した誇大さの程度には、
さまざまな患者において違いがある。
一部の患者は、自分が
神、イングランドの女王、大統領の息子、有名なロックスターなど
であると信じてるが、そのほかの患者はそれほど壮大ではなく、
自分は熟練したアスリートや偉大な発明家だと考えている。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.056s