[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む76 (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
867(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/08(日)14:29 ID:KY2miv9A(17/23) AAS
<i.i.d. 独立同分布>
・現代確率論が、独立な確率変数の無限族を扱えることは、下記時枝記事にもある
(時枝は、「箱にXnのランダムな値を入れられて」と表現しているが、数学では箱自身をXnと考えることができる(念のための注))
・箱が1つある。それをXiとする。サイコロの目を入れる。自明にP(Xi)=1/6
・その回りに箱を1つ増やす。独立で同分布として、サイコロの目を入れるとして、同じく確率は1/6。
・箱をn個増やす。上記同様
・箱をn+1個増やす。上記同様
・数学的帰納法により、全ての自然数で成立つ。つまりは、時枝記事の数列に適用できるということ
(自明だが念のため)・そして、時枝先生は、反省しています。 (下記)「もうちょっと面白いのは,独立性に関する反省だと思う.その箱のX と他のX1,X2,X3,・・・がまるまる無限族として独立なら,当てられっこないではないか−−他の箱から情報は一切もらえないのだから」
(下記の独立の定義より)
・独立だから、Xi以外の箱の変数の値が分かっても、Xiの確率は変化せず、P(Xi)=1/6のまま
・”i.i.d. 独立同分布”の仮定より、全てのiについて上記は成立する
QED
(参考)
スレ47?2chスレ:math
(抜粋)
数学セミナー201511月号P37 時枝記事より
「もうちょっと面白いのは,独立性に関する反省だと思う.
確率の中心的対象は,独立な確率変数の無限族
X1,X2,X3,…である.
n番目の箱にXnのランダムな値を入れられて,ある箱の中身を当てようとしたって,
その箱のX と他のX1,X2,X3,・・・がまるまる無限族として独立なら,
当てられっこないではないか−−他の箱から情報は一切もらえないのだから.
(引用終り)
外部リンク:ja.wikipedia.org
独立 (確率論)
(抜粋)
2つの事象が独立といった場合は、片方の事象が起きたことが分かっても、もう片方の事象の起きる確率が変化しないことを意味する。2つの確率変数が独立といった場合は、片方の変数の値が分かっても、もう片方の変数の確率分布が変化しないことを意味する[1]。
事象 A と B が独立であるとは、事象 B の起こることが事象 A の起こる確率に一切の影響を与えないことを意味する。
868: 2019/09/08(日)14:30 ID:cMOAtiJl(14/20) AAS
>>865
>但し、”「まったく別もの」ではない”は、正しい(^^
意味不明過ぎw 「別じゃない」なら何?
869: 2019/09/08(日)14:33 ID:cMOAtiJl(15/20) AAS
>>866
また妄想か
早く治療しろ
870(2): 2019/09/08(日)14:34 ID:bH+0Hw/z(2/4) AAS
>>838
ピエロ、とはどなたですか?
妄想のようですね 精神科を紹介しますよ
あなたは「自然数論の真偽の定義」を示せていませんね
要するにあなたは論文を理解できないにもかかわらず
論文の著者を無条件に信じた愚か者ですね
871: 2019/09/08(日)14:38 ID:cMOAtiJl(16/20) AAS
>>867
>・数学的帰納法により、全ての自然数で成立つ。つまりは、時枝記事の数列に適用できるということ
大間違い
任意の有限列で成立することが無限列で成立するとは限らない
数学的帰納法を誤用している
近所の高校生に教えてもらえ
まあ高校生も困るだろうな、これだけ説明しても分からないバカ相手じゃ
872(1): 2019/09/08(日)14:45 ID:bH+0Hw/z(3/4) AAS
カット除去による無矛盾性証明に関しては、
林晋の「形式化と無矛盾性証明のパラドックス」
(林晋編著「パラドックス」(日本評論社)に収録)
を読まれたい
要するに、自然数論の証明がカットを含んでいないなら無矛盾である、
と自然数論でも証明できるので、一般の自然数論の証明から
必ずカットを除去できるならば、無矛盾性が証明できるという発想だが
肝心の「必ずカットが除去できる」という点が、自然数論の中では
実現できず、自然数論の外の推論(ε0に関する超限帰納法)を必要とする
873: 2019/09/08(日)14:50 ID:cMOAtiJl(17/20) AAS
>>865
>いや確かに
>正則性公理を採用しているから
>x not∈ x
>だな
バカ過ぎ
正則性公理を持ち出すまでもなく間違いである
874: 2019/09/08(日)15:11 ID:bH+0Hw/z(4/4) AAS
>>872
ついでにいうと、カットの無い証明に関する証明可能性述語は
第二不完全性定理の証明の前提である可導性条件を満たさないので
第二不完全性定理(自然数論の無矛盾性証明が自然数論で証明できない)
に反するように見える結果が証明できる
875(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/08(日)17:48 ID:KY2miv9A(18/23) AAS
>>867 補足追加
1〜pまでの数をランダムに箱に入れる
(例えば、1〜pまでの整数の札を、毎回シャッフルして選ぶ。選んだ数を書いた紙を箱に入れる。札は戻して、繰返す。)
箱は、取り敢ず有限n個とする。
d=1, 2, 3, 4, ・・・, n-1, n
*)1,p-1,p^2-p,p^3-p^2,・・・,p^(n-1)-p^(n-2),p^n-p^(n-1)
dは決定番号
*)は、場合の数で、全体ではp^n
これを確率分布に直すと
d= 1, 2, 3, 4 , ・・・, n-1, n
p=1/p^n,1/p^(n-1),(p^2-p)/p^n,(p^3-p^2)/p^n,・・・,p^-p^2, 1-1/p
時枝の決定番号では、見ての通り、nが大きくなっても
減衰しません(下記「裾の重い分布」ご参照)
こういう分布で、d→∞ になると
なので、d→∞で確率論における確率測度(probability measure )(例えば下記重川「定義1.3」(特にP(Ω)=1)など)を満たさなくなるのです
外部リンク:ja.wikipedia.org
裾の重い分布
(抜粋)
裾の重い分布あるいはヘヴィーテイルとは、確率分布の裾がガウス分布のように指数関数的には減衰せず[1]、それよりも緩やかに減衰する分布の総称。 また類似の用語に、ファットテイル、裾の厚い分布、ロングテール、劣指数的(subexponential)などがある。
スレ74 2chスレ:math
外部リンク[pdf]:www.math.kyoto-u.ac.jp
2013年度前期 確率論基礎 講義ノート 重川一郎 京都大学大学院理学研究科数学教室
P6
定義1.3 可測空間(Ω,F)上の測度PでP(Ω)=1 を満たすものを確率測度(probability measure )という。
876(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/08(日)17:54 ID:KY2miv9A(19/23) AAS
>>843
>無限列は「これ以上分けられない」のですよね?
分けられますよ
下記の確率論 Makoto Mori 日大 2013
P12 例 1と例 2 ご参照
(^^
外部リンク:www.math.chs.nihon-u.ac.jp
Makoto Mori
外部リンク[pdf]:www.math.chs.nihon-u.ac.jp
確率論 Makoto Mori 日大 2013
P12
第 1 章 確率空間
例 1 An = {ω ∈ {0, 1}^N : ωn = 1} とおけば,P(An) = 1/2 は,Borel?Cantelli
の (2) をみたす.したがって,確率 1 で硬貨投げは表が無限回現れる.
例 2 Akn = {{0, 1}^N : ωn = ・ ・ ・ = ωn+k?1 = 1} とおけば,P(Akn) = 1/2^k は,
Borel?Cantelli の (2) をみたす.したがって,確率 1 で硬貨投げは表が連続 k
回が無限回現れる.確率 1 の集合の可算交わりは確率 1 なので,いくらでも
長い連が確率 1 で現れる.
P28
第 3 章 確率変数
例 4 X1, X2, . . . を独立な硬貨投げとする.
例 5 X1, X2, . . . を独立な硬貨投げとする.
877(6): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/08(日)18:09 ID:KY2miv9A(20/23) AAS
>>870
ピエロちゃんじゃないのかね?
もし、違ったら、ご容赦
(まだ疑念は残るが)
なお、”ピエロ”の定義は、>>2ご参照
(引用開始)
”あなたは「自然数論の真偽の定義」を示せていませんね
要するにあなたは論文を理解できないにもかかわらず
論文の著者を無条件に信じた愚か者ですね”
(引用終り)
ご冗談でしょw
貴方は、どんなに偉い人かしらないが
ただの 132人目の素数さん=ID:bH+0Hw/zでしょ
いや、別に、数学を偉さで判断しようとは思わないが
あなたは、前原昭二先生の 1979の投稿論文(下記)が間違っていると言いたいわけ??ww(^^
この5CHのガロアスレで、言いたいわけ?w
議論の場所を間違えていませんか?
自分の蘊蓄を語りたいの?
なら論文投稿したら?
それとも精神科を紹介しましょうか(^^
参考(>>802)
外部リンク:www.jstage.jst.go.jp
自然数論 の無 矛盾性証明の必要性
前原昭二 筑波大学数学系 科学基礎論研究 Vol.14 1979
(>>821)
外部リンク:ja.wikipedia.org
論理学者
(抜粋)
前原昭二
外部リンク:kotobank.jp
コトバンク
前原昭二(読み)まえはら しょうじ デジタル版 日本人名大辞典+Plusの解説
1927−1992 昭和後期-平成時代の数学者。
昭和2年10月30日生まれ。
38年東京教育大教授となる。
52年筑波大教授。
55年東京工業大教授。
63年放送大教授。
数理論理学の研究で知られる。平成4年3月16日死去。64歳。
東京出身。東大卒。著作に「数学基礎論入門」「記号論理入門」など。
外部リンク:7shi.hateblo.jp
七誌の開発日記
2018-11-02
(抜粋)
ブルバキ数学原論日本語訳の巻番号
リスト
1.1968年『集合論 1』前原昭二訳(第1章、第2章)
878: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/08(日)18:14 ID:KY2miv9A(21/23) AAS
>>877 タイポ訂正
外部リンク:www.jstage.jst.go.jp
自然数論 の無 矛盾性証明の必要性
↓
自然数論の無矛盾性証明の必要性
妙に、半角スペースが入るんだよね(^^
879: 2019/09/08(日)18:16 ID:cMOAtiJl(18/20) AAS
>>875
まったく的外れ
100個の決定番号は定数なので分布を考えること自体が無意味
880(5): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/08(日)18:22 ID:KY2miv9A(22/23) AAS
>>877 補足
自然数論なんて
>>793で
"自然数論は自然数全体の集合の存在を前提した理論ではない"
を茶化すために
>>802で
前原昭二先生を引用しただけで
集合を外れた「自然数論」に深入りするつもりはないわけよw(^^
こちらとしてはね
そんなものは、いまの大学数学科の教程にないし
オワコンでしょう? 違いますか?(^^;
でも、数学史として、こういう議論もあったということは
知っておいても良いとは思いますよ
(参考)
外部リンク:www.jstage.jst.go.jp
自然数論の無矛盾性証明の必要性
前原昭二 筑波大学数学系 科学基礎論研究 Vol.14 1979
881: 2019/09/08(日)18:24 ID:cMOAtiJl(19/20) AAS
100列及び対応する100個の決定番号は定数
そのいずれを選ぶかが確率変数
サルのナンセンスな当てずっぽう戦略と違い時枝戦略では上記の通り
サルに数学は無理
882(1): 2019/09/08(日)20:40 ID:7MS+nwFK(4/4) AAS
>>876
> 分けられますよ
> 例 1と例 2 ご参照
> ω ∈ {0, 1}^N
ωは0と1からなる無限数列なので分けてないです
> An = {ω ∈ {0, 1}^N : ωn = 1}
はn番目が1であるような0と1からなる無限数列ω
> Akn = {{0, 1}^N : ωn = · · · = ωn+k−1 = 1}
は以下のことだが
> A^k_n = {ω ∈ {0, 1}^N : ωn = · · · = ω(n+k−1) = 1}
はn番目から1が連続k回現れる0と1からなる無限数列ω
883(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/08(日)22:34 ID:KY2miv9A(23/23) AAS
>>875 訂正と追加
訂正
p=1/p^n,1/p^(n-1),(p^2-p)/p^n,(p^3-p^2)/p^n,・・・,p^-p^2, 1-1/p
↓
p=1/p^n,1/p^(n-1),(p^2-p)/p^n,(p^3-p^2)/p^n,・・・,1/p-1/p^2, 1-1/p
追加
(引用開始)
dは決定番号
*)は、場合の数で、全体ではp^n
これを確率分布に直すと
d= 1, 2, 3, 4 , ・・・, n-1, n
p=1/p^n,1/p^(n-1),(p^2-p)/p^n,(p^3-p^2)/p^n,・・・,1/p-1/p^2, 1-1/p
(引用終り)
ここ分かると思うが
s = (s1,s2,s3,・・・,sn) (問題の数列)
r = (r1,r2,r3,・・・,rn) (代表の数列)
差を取ると
s-r = (s1-r1,s2-r2,s3-r3,・・・,sn-rn)
決定番号dなら、d番目から両者が一致して0になります。
それで、上記の分布で分かることは、d=1とか2とか小さい値の確率は小さいのです
確率的には、d=nとなる場合が、一番確率が大きいのです
それで、入れる数p→∞と大きくすると
d=n の確率 1-1/p→1
d=n以外の確率 (p^3-p^2)/p^n(など)→0
となります
なので、d=n以外の確率は0になるのです
d=n以外の場合を論じるのは、確率の0場合を論じていることになります。
確率の0場合に、二つの決定番号でどちらが大きいかなどと言っているのが、時枝記事の手法です
884: 2019/09/08(日)23:17 ID:cMOAtiJl(20/20) AAS
>>883
無限個の決定番号の中での割合を論じても無意味
なぜなら時枝解法で大小比較の対象となる決定番号は100個だから
サルの言いがかりは無意味
885(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/09(月)06:58 ID:w2gV7wtr(1/38) AAS
>>883 補足
1)有限長の数列
s = (s1,s2,s3,・・・,sn) (問題の数列)
r = (r1,r2,r3,・・・,rn) (代表の数列)
で、入れる数p→∞と大きくすると
決定番号の確率分布は、
d=n の確率1
d=n 以外の確率0
2)上記有限長の数列において
d=n 以外の二つの数 d1,d2をとって
どちらが大きいか d1<d2となる確率
P(d1<d2)=1/2だとか、うんぬんだとか
それって、上記「d=n 以外の確率0」の中の議論で
それは、殆ど無意味な議論です
3)では、列の長さnをどんどん長くしていったら?
d=n の確率1
d=n 以外の確率0
は不変で、d=nの箱が、どんどん先頭から遠くへ行く
どこまで遠くへ行っても、先頭からd=n-1までの”確率0”は変わりません
4)で、列の長さn→∞の極限を考えたら?
d=nの箱が、どんどん先頭から遠くへ行く
どこまで遠くへ行っても、先頭からd=n-1までの”確率0”は変わりません
有限の二つの数 d1,d2をとって
どちらが大きいか d1<d2となる確率
P(d1<d2)=1/2だとか、うんぬんだとか
それって、上記「確率0」の中の議論で
それは、殆ど無意味な議論です
(そんなことが起きるのは、”確率0”ですから、それで”数当てが可能”とは言えません)
QED (^^
886(1): 2019/09/09(月)07:11 ID:uwfnXwUu(1/60) AAS
>>877
私はあなたがピエロと呼ぶ人物ではありません
>あなたは、前原昭二先生の 1979の投稿論文が間違っていると言いたいわけ?
少なくとも「自然数論の真偽の定義」という言葉で
何をいおうとしてるのかは明確でないですね
>>880
>"自然数論は自然数全体の集合の存在を前提した理論ではない"
>を茶化すために前原昭二先生を引用しただけで
自然数論をご存じないなら黙ったほうがいいですね
見当違いな間違いを書くあなたが恥をかきますよ
887(2): 2019/09/09(月)07:15 ID:uwfnXwUu(2/60) AAS
>>880
>そんなものは、いまの大学数学科の教程にない
ウソはいけませんね
ありますよ あなたが知らないだけです
>オワコンでしょう? 違いますか?
違いますね 現役ですから
888(1): 2019/09/09(月)07:26 ID:uwfnXwUu(3/60) AAS
>>877
以下の新井敏康氏の論文を読むと
前原昭二氏が「自然数論の真偽の定義」でいおうとしていたのは
ε-代入法のことであるらしいと想像される
素人のID:KY2miv9Aには何のことやらチンプンカンプンでしょう
外部リンク:www.jstage.jst.go.jp
新井 敏康(あらい としやす、1958年 - )
日本の数学者、論理学者
東京大学大学院数理科学研究科教授
専門は数学基礎論
東京都生まれ
東京大学教養学部基礎科学科卒
筑波大学数学系大学院博士課程修了
理学博士
889(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/09(月)08:09 ID:w2gV7wtr(2/38) AAS
>>882
あなたの議論は、無意味だと思う
1)下記のように、標準的な確率論のテキストで、
確率現象、例えば、硬貨投げやサイコロ投げの
無限回の試行が記載されている
2)それによる無限長の数列が記載されている
3)下記の日大テキストのように、無限長の数列の一部を取り出して、確率を論じることは可能
勿論、無限長の数列の一つを取り出して、確率を論じることも可能
4)よって、これらの確率現象による無限長の数列を、時枝に適用すれば良い
参考(>>876)
P12 例 1と例 2 ご参照
外部リンク:www.math.chs.nihon-u.ac.jp
Makoto Mori
外部リンク[pdf]:www.math.chs.nihon-u.ac.jp
確率論 Makoto Mori 日大 2013
P12
第 1 章 確率空間
例 1 An = {ω ∈ {0, 1}^N : ωn = 1} とおけば,P(An) = 1/2 は,Borel?Cantelli
の (2) をみたす.したがって,確率 1 で硬貨投げは表が無限回現れる.
例 2 Akn = {{0, 1}^N : ωn = ・ ・ ・ = ωn+k?1 = 1} とおけば,P(Akn) = 1/2^k は,
Borel?Cantelli の (2) をみたす.したがって,確率 1 で硬貨投げは表が連続 k
回が無限回現れる.確率 1 の集合の可算交わりは確率 1 なので,いくらでも
長い連が確率 1 で現れる.
P28
第 3 章 確率変数
例 4 X1, X2, . . . を独立な硬貨投げとする.
(>>737)
>>730 東大 会田茂樹 PDF
「(3) 無限回のサイコロ投げ
何回も独立に
サイコロ投げを続けることを考える. その試行の結果として、1〜6 の数字の無限列が現れる.
この無限列一つ一つが根元事象とみなせる. すなわち
Ω は Ω = { a1, a2, ・ ・ ・ , an, ・ ・ ・) | ai = 1, ・ ・ ,6 }」
さらに、追加で会田茂樹 PDF P3 10行目
「なんらかのランダムな現象や試行があり、その結果得られる数値一つ一つが
根元事象を、数値全体が標本空間になっていることを注意しておきます. このランダムな数値が確率変数,
ランダムな数値がどのように分布しているかを表すのが確率分布になります.」
(引用終り)
無限回のサイコロ投げ、1回投げる毎に入れる。それだけです
外部リンク[pdf]:www.ms.u-tokyo.ac.jp
数理統計学 会田茂樹 東大
890: 2019/09/09(月)08:42 ID:oA3pm0/T(1/9) AAS
>>885
100個の決定番号がどんな自然数だろうと時枝解法は成立する。
なぜなら自然数の基本性質から「100個中単独最大は1個以下」は避けようが無いから。
確率0?
おまえの云う確率とはd(R^N)の中での割合に他ならないが無意味。
なぜなら時枝解法における決定番号の大小比較は {d(s1),...,d(s100)} の中だから。
相変わらずバカ丸出しのサルでした
891: 2019/09/09(月)09:04 ID:rjgzRb0t(1) AAS
>>889
「無限個まとめて」と「1つずつ」の違いが全く分かっていないようなので
「無限個まとめて」では属する同値類も同時に選択している
逆に言えば同値類の選択は「無限個まとめて」によって行われる
「1つずつ」だけでは同値類は選択できない
理由 : 無限数列の1つの項を変えても同値類は変化しない
有限数列{a1, a2, ... , an}
0で空箱を表すとすれば無限数列{a1, a2, ... , an, 0, 0, ... }
{a1, a2, ... , an, a(n+1), 0, 0, ... }で同値類は変化しない
有限数列から極限をとって無限数列にするというのは
極限値である無限数列が属する同値類を選択するということで
その選択も「無限個まとめて」によって行われる
892(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/09(月)09:25 ID:w2gV7wtr(3/38) AAS
>>886
>私はあなたがピエロと呼ぶ人物ではありません
まあ、その言い分を一応は認めます
>少なくとも「自然数論の真偽の定義」という言葉で
>何をいおうとしてるのかは明確でないですね
"「自然数論の真偽の定義」という言葉"?
意味不明。「自然数論の真偽の定義」を、私は使ったことがない
(私の引用 >>803にも出てきませんよ。さらに、前原昭二先生のPDFでも、「自然数論の真偽の定義」という言葉は出てきません。いま再度確認しました。
外部リンク:www.jstage.jst.go.jp 自然数論の無矛盾性証明の必要性 前原昭二 筑波大学数学系 科学基礎論研究 Vol.14 1979)
かつ、私の引用は単に、後の過去ログ検索の便のために便利はキーワード部分をコピペしただけ(多分、それは、前原論文の重要キーワードだと思いますが)
>自然数論をご存じないなら黙ったほうがいいですね
笑える。そして、お断りする
貴方は、「自然数論をご存じ」だという?w
どうぞ、自由にこのスレで、蘊蓄を語って下さい
私に言えるのは、それだけです。貴方は、只の 132人目の素数さん= ID:uwfnXwUuにすぎない。私に指図する資格と権限はありません(^^
どうぞ、自分は「自然数論を知っている」を、証明してください。気の済むままにね。歓迎しますよw(^^
893(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/09(月)09:36 ID:w2gV7wtr(4/38) AAS
>>887
>そんなものは、いまの大学数学科の教程にない
>ウソはいけませんね
>ありますよ あなたが知らないだけです
はい
2019年あるいは、近年でも良いです
例示願います
>>オワコンでしょう? 違いますか?
>違いますね 現役ですから
多くの大学数学科の教程で、「自然数論」はやらないでしょう?w
新井 敏康先生の2019年の主要な研究テーマが、「自然数論」なのですか?
それって、証明ある?w(^^;
894: 2019/09/09(月)09:50 ID:oA3pm0/T(2/9) AAS
>>889
>無限回のサイコロ投げ、1回投げる毎に入れる。それだけです
「1回投げるごとに入れる」を何回繰り返せば入れ終わるのか答えて下さい
895(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/09(月)10:01 ID:w2gV7wtr(5/38) AAS
>>888
>以下の新井敏康氏の論文を読むと
「国立情報学研究所教授の新井紀子は妻[2]」か、なるほど(^^
>前原昭二氏が「自然数論の真偽の定義」でいおうとしていたのは
>ε-代入法のことであるらしいと想像される
「あるらしいと想像される」とは、どういう物言いなんですかね
人に、”おまえは理解せず引用している”というお人がw(^^
そもそも、ε-代入法は、前原昭二氏の論文について書いたことではない(前原昭二氏の論文は、新井氏の参考文献に挙げられていない)
新井氏論文より引用
”Gentzenの証明は,証明図の正規化cut-elimination
と呼ばれる方法によっており,説明には紙幅を要する。
一方,Hilbertがその無矛盾性証明の方法として提案
し,[Ackermann 1940]においてPAに対して実行さ
れたε-代入法(ε-substitution method)の発想は,単
純なものなのでこれについて少し説明する。”
なので、Gentzenの証明の代用として、ε-代入法を説明するとなっていますよ
(Gentzen(1936)は、新井氏、前原氏で共通ではあるけれども)
>素人のID:KY2miv9Aには何のことやらチンプンカンプンでしょう
”素人”は、正しい
しかし、”チンプンカンプン”でもないみたい
その直前の”ε0-ordering”については、過去ZFC公理系の話題のときに
英文で”ε-ordering”、正確には、∈を利用した順序があり読んだけど
(面倒なので過去ログは探さないが、興味があればどうぞ。10スレくらい過去かな)
その類推で、やりたいことは、なんとなく分かるよ
あと、どんどん蘊蓄書いてください
あなた、面白いわ
(参考)
外部リンク:ja.wikipedia.org
新井 敏康(1958年 - )は、日本の数学者、論理学者。東京大学大学院数理科学研究科教授。専門は数学基礎論[1]。国立情報学研究所教授の新井紀子は妻[2]。
東京都生まれ。
(抜粋)
略歴
1958年(昭和33年)- 東京都生まれ。
東京大学教養学部基礎科学科卒。
筑波大学数学系大学院博士課程修了。
2001年- 2007年- 神戸大学大学院自然科学研究科教授。
2019年- 東京大学大学院数理科学研究科教授。
外部リンク:researchmap.jp
新井 敏康
896(1): 2019/09/09(月)10:09 ID:uwfnXwUu(4/60) AAS
>>892
>まあ、その言い分を一応は認めます
「まあ、その」と「一応は」は削除してください
誠意が感じられません
>「自然数論の真偽の定義」を、私は使ったことがない
>前原昭二先生のPDFでも、「自然数論の真偽の定義」
>という言葉は出てきません。
あなたがPDFを読んでいないことは明らかですね
「自然数論の真偽の定義」でサーチしただけでは見つかりませんよ
「直観主義的自然数論の基礎づけは,
上述のような常識的解釈だけでは困難である。
”命題の真偽”に,より精密な”定義”を与えることが必要となる。
そして,それを実行したのが,ゲソツェンによる
"自然数論の無矛盾性証明"である。」
ほら、”命題の真偽”と”定義”が出てきたでしょう。
一度でも読んでいれば気づくこと
一度も読んでいないから気づけないのですよ
さらに続けます
「ゲーデルが…与えた自然数論の無矛盾性証明も,直観主義的
”自然数論の命題の真偽”に1つの解釈を与えたものなのである。」
ほら、”自然数論の命題の真偽”が出てきたでしょう。
一度でも読んでいれば気づくこと
一度も読んでいないから気づけないのですよ
上下前次1-新書関写板覧索設栞歴
あと 106 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.028s