[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む75 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
724(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/24(土)07:01 ID:9gk+t9xe(2/26) AAS
おは、どうも。スレ主です。
サイコパスのおサルと、High level peopleの残党のサルと、二匹いるらしいが、なかなか区別が難しい(^^
>>716
High level peopleの残党のサルだと思うのだが(^^;
(引用開始)
外部リンク:ja.wikipedia.org
>乱数列(らんすうれつ)とはランダムな数列のこと。
>乱数列の種類
>離散一様分布(整数の一様分布乱数)
↑
時枝解法はこれ
バカザルは理解できないので屁理屈しか言えないw
(引用終り)
それ、”諸刃の剣”ですけど(^^
「乱数列(らんすうれつ)とはランダムな数列のこと」で
その”ランダム”に、リンクが張ってありますよ
で下記なw
外部リンク:ja.wikipedia.org
ランダム
(抜粋)
ランダム(英語: random)とは、事象の発生に法則性(規則性)がなく、予測が不可能(英語版)な状態である[1]。ランダムネス(英語: randomness)、無作為性(むさくいせい)ともいう。
ランダムな入力(乱数発生器(英語版)や擬似乱数発生器など)に依存するモンテカルロ法は、計算科学などの科学において重要な技術である[3]。これに対し、準モンテカルロ法(英語版)では乱数列ではなく一様分布列を使用している。
(引用終り)
ですから、”ランダム”を仮定すれば、「予測が不可能」であって、時枝さんのいう確率99/100とか、1−εにはならない
なお、「準モンテカルロ法(英語版)では乱数列ではなく一様分布列を使用している」という記述から、乱数列と一様分布列とを区別する考えもあるらしいね
728: 2019/08/24(土)07:08 ID:6NI2mJfi(3/22) AAS
>>724
正しくは「数学が分からん工業高校卒の在阪サル一匹がいるw」
730(2): 2019/08/24(土)07:22 ID:AQbyp3dO(1/3) AAS
>>724 >>727
> ”ランダム”を仮定すれば、「予測が不可能」であって、
> 時枝さんのいう確率99/100とか、1−εにはならない
箱に実数を入れるのだからR^n(nは有限)の元がnを無限大にすれば
全てR^Nの元になることは「予測可能」ですよ
このことから以下のことが導かれる
完全代表系が1つあれば「ランダムな無限数列」が有限個の項を
除いてその完全代表系に含まれる代表元の1つと無限個の項が
一致することは「予測可能」である
> 確率99/100とか、1−ε
99/100 = 1 - 1/100, 1 - εの確率1は無限個の項が一致すること = 「予測可能」
確率1/100や 確率εは有限個の項を除くこと(数列を分ける方法)に対応する
751(1): 2019/08/24(土)10:36 ID:IB6jV204(8/32) AAS
>>724
>ですから、”ランダム”を仮定すれば、「予測が不可能」であって、時枝さんのいう確率99/100とか、1−εにはならない
何を言い出すのかと思えばw
時枝記事でランダムなのは次の箇所だ
「さて, 1〜100 のいずれかをランダムに選ぶ.」
予測不可能なのは100列のいずれが選ばれるかである。だから列のindexが確率変数なのである。
箱の中身がランダムに変動することはない。プレーヤー2から見れば箱の中身は固定されている。
バカザルに数学は無理
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 2.332s*