[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む75 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
717
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/24(土)00:13 ID:9gk+t9xe(1/26) AAS
>>714
>「さて, 1〜100 のいずれかをランダムに選ぶ. 例えばkが選ばれたとせよ. s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない. 」
>100個の決定番号のいずれかをランダムに(一様分布で)選択しているんだがw

ある同値類における決定番号は
代表を選ぶことで決まる
代表は、ある同値類内の元のどれでもよい(下記ご参照)

ところで、時枝の1つの同値類は集合として、非可算の濃度を持つ(∵ 可算無限長の数列の同値類だから)
一方、決定番号dは、自然数だから、可算個しかない
従って、少なくともある1つの決定番号dに対して、その背後に非可算の濃度の代表候補がある

実は、時枝の定義の通り、ある箱に実数R中から数を選んで入れて良いとするならば、入れられる数の候補は非可算の濃度を持つから
2以上の全ての決定番号dの背後には、その背後に非可算の濃度の代表候補がある
(時枝の手法は、世にある全ての数列を分類する前提であることを思い出そう)

なので、何をランダムに選ぶかどうかは知らずw(^^
決定番号は、その背後の非可算の濃度の代表候補を考えれば
自明に、一様分布になどになりようがない

(参考)
外部リンク:ja.wikipedia.org
同値関係
(抜粋)
一つの同値類 X に対して、[x] = X となる S の元 x を1つ定めることを、X の代表元として x をとるという。1つの同値類は、それに含まれている元のうちどれをとっても、それを代表元とする同値類はもとと同じ集合になる(代表元の取替えによって不変である)
719
(2): 2019/08/24(土)01:24 ID:IB6jV204(3/32) AAS
>>717
まったく分かってないね

時枝解法で考えている一様分布は、{d1,...,d100} から1元を選択する際の分布であって、
{d(s)|s∈R^N} から1元を選択する際の分布ではない。
(別に後者を考えたければ考えても良いが、非可測だから確率が定義されず、勝てる戦略にならないだけw)

そんなことは
「さて, 1〜100 のいずれかをランダムに選ぶ. 例えばkが選ばれたとせよ. s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない. 」
を読めば明らか。

バカザルには人間の言葉が理解だけの話。サルの耳に念仏としか言い様が無い。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.043s