[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む75 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
547(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/20(火)23:21 ID:FmpY0/8E(8/8) AAS
つづき
非可積分函数に対してフビニの定理が成立しないこと
絶対値の積分は有限であるという仮定は、ルベーグ可積分性であり、この仮定が無いと二つの逐次積分は異なる値を取り得る。
外部リンク:mathoverflow.net
Probabilities in a riddle involving axiom of choice Dec 9 '13
(抜粋)
(Alexander Pruss氏)
<12>
The probabilistic reasoning depends on a conglomerability assumption・・
But we have no reason to think the event of guessing correctly is measurable with respect to the probability measure induced by the random choice of sequence and index i, and we have no reason to think that the conglomerability assumption is appropriate.
A quick way to see that the conglomerability assumption is going to be dubious is to consider the analogy of the Brown-Freiling argument against the Continuum Hypothesis (see here for a discussion).
外部リンク:www.mdpi.com
(引用終り)
以上
556: 2019/08/21(水)06:41 ID:SfXTc3qP(2/20) AAS
>>546-547
何が言いたいのか不明
箱の中身が0もしくは1なら、
無限列の全体は{0,1}^Nであるから
全体が1となる測度を設定できる
その上で、「決定番号がnになる数列の全体の集合」は
ヴィタリ集合の場合と同様の方法で非可測が証明できる
したがって、数列を確率変数とする場合は
そもそも逐次積分自体が不能であり、確率が不定
し・か・し、そもそも時枝問題は数列を確率変数としていない
したがって非可測性による異議申し立ては無意味
そして非可測性を持ち出した時点で
「当たる確率0」の主張も正当化できない
(100列のうち選択列だけを確率変数とする
姑息な技を弄しても、そもそも目的の集合が
非可測だから測度0とはいえない)
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 2.402s*