[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む75 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
546
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/20(火)23:21 ID:FmpY0/8E(7/8) AAS
>>545
つづき

Indeed, we can say something stronger: the set S is not a measurable set, and consequently Pr(p < q) is not defined.
If it were, then the conditions for applying Fubini’s Theorem would be satisfied.
We could compute the measure of S by iterated integrals and it would not matter whether we used horizontal or vertical cross-sections.
These two ways of computing the integral would give the same result.
We know that they do not: The measure of each vertical cross-section is 0, while the measure of each horizontal cross-section is 1. Hence, S is not measurable.7

外部リンク:ja.wikipedia.org
フビニの定理

数学においてフビニの定理(フビニのていり、英: Fubini's theorem)とは、Guido Fubini (1907) によって導入された、逐次積分による二重積分の計算が可能となるための条件に関する一結果である。すなわち、次のような計算が可能となる。

この結果、積分の順序(英語版)は逐次積分において変えることが可能となる。フビニの定理は、ある二変数函数が可積分であれば、上記のような二回の繰り返しの積分は等しいことを意味する。Leonida Tonelli (1909) によって導入されたトネリの定理(Tonelli's theorem)も同様のものであるが、その定理が適用される函数は可積分ではなくとも非負であればよい。

空間が σ-有限でないなら、フビニの定理が成立しないような異なる積測度が存在する可能性もある。例えば、ある積測度と非負可測函数 f に対して、|f| の二重積分はゼロとなるが二つの逐次積分は異なる値となることが起こり得る(後述の、反例に関する節を参照)。

反例
次の例では、フビニの定理およびトネリの定理のいくつかの仮定が満たされないとき、どのようにして定理が成立しないかを示す。

非可測函数に対してフビニの定理が成立しないこと
たとえ |f| が可積分でいずれの逐次積分が well-defined であっても、非可測であればフビニの定理が成立しないことがある

つづく
556: 2019/08/21(水)06:41 ID:SfXTc3qP(2/20) AAS
>>546-547
何が言いたいのか不明

箱の中身が0もしくは1なら、
無限列の全体は{0,1}^Nであるから
全体が1となる測度を設定できる

その上で、「決定番号がnになる数列の全体の集合」は
ヴィタリ集合の場合と同様の方法で非可測が証明できる
したがって、数列を確率変数とする場合は
そもそも逐次積分自体が不能であり、確率が不定

し・か・し、そもそも時枝問題は数列を確率変数としていない
したがって非可測性による異議申し立ては無意味
そして非可測性を持ち出した時点で
「当たる確率0」の主張も正当化できない
(100列のうち選択列だけを確率変数とする
 姑息な技を弄しても、そもそも目的の集合が
 非可測だから測度0とはいえない)
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.035s