[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む75 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
505
(2): 2019/08/20(火)06:06 ID:7640BXpe(1/5) AAS
Pruss、
"Symmetry and Brown-Freiling Refutation of the Continuum Hypothesis"
にて曰く

"the probability Pr(p < q) is undefined, rather than 0."
「確率Pr(p < q)は0でなくむしろ未定」

これが全て スレ主の主張「確率0」はPrussによっても否定されたw
509
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/20(火)07:18 ID:FmpY0/8E(3/8) AAS
>>505>>470
おサルは、我田引水、勝手解釈、自己に都合よく誤読・誤解する名人ですな
さすがは、サイコパスです

細かいところは略すが

(引用開始)
Pruss、
"Symmetry and Brown-Freiling Refutation of the Continuum Hypothesis"
にて曰く
(引用終り)

(>>301より)
外部リンク:mathoverflow.net
Probabilities in a riddle involving axiom of choice Dec 9 '13
 (抜粋)
(Alexander Pruss氏)
A quick way to see that the conglomerability assumption is going to be dubious is to consider the analogy of the Brown-Freiling argument against the Continuum Hypothesis (see here for a discussion).
外部リンク:www.mdpi.com

だけど、外部リンク:www.mdpi.com は、著者 Paul Bartha氏で
”Department of Philosophy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada”
Pruss氏自身の論文ではないよ(^^

>"the probability Pr(p < q) is undefined, rather than 0."
>「確率Pr(p < q)は0でなくむしろ未定」
>これが全て スレ主の主張「確率0」はPrussによっても否定されたw

そのPr(p < q) は、時枝とは無関係の確率計算ですよ

おサルは、我田引水、勝手解釈、自己に都合よく誤読・誤解する名人ですな
さすがは、サイコパスですw(^^;
557
(9): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/21(水)07:02 ID:6H2tIaYx(1/10) AAS
>>509-より)
>>505>>470
おサルは、全然論文が読めてない

(引用開始)
Pruss、
"Symmetry and Brown-Freiling Refutation of the Continuum Hypothesis"
にて曰く
(引用終り)

(>>301より)
外部リンク:mathoverflow.net
Probabilities in a riddle involving axiom of choice Dec 9 '13
 (抜粋)
(Alexander Pruss氏)
A quick way to see that the conglomerability assumption is going to be dubious is to consider the analogy of the Brown-Freiling argument against the Continuum Hypothesis (see here for a discussion).
外部リンク:www.mdpi.com

だけど、外部リンク:www.mdpi.com は、著者 Paul Bartha氏で
”Department of Philosophy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada”
Pruss氏自身の論文ではない

論文の要約としては
1.Freiling [1] and Brown [2] さんが、
 ”put forward a probabilistic reductio argument intended to refute the Continuum Hypothesis. ”
 ということで、確率論からthe Continuum Hypothesisの不成立を主張したんだ
2.筆者のPaul Bartha氏は、”This paper argues that the argument fails, but is still of interest for two reasons.”
 で、議論は間違っているけど、2つの点で面白いという(この論文のキモ)
3.で、”(iii)Symmetry. Brown writes [2]: ”で
 “The independence and randomness of the darts guarantees the symmetry of the throws.
 Consequently, either dart may be considered the first throw.”
 Brown means: In determining the probability of any outcome for the darts taken singly or as a pair, we may freely suppose that either dart is the first throw.”
 ってところ(dartsわかるよね矢を投げるゲームで) ”the symmetry of the throws”を使っているけど、ここを批判している
4.この批判が、Pruss氏がこの論文を引いたキモで、時枝の決定番号大小比較の議論(直観的な「大小比較」はダメダメ)に関係しているんだな

つづく
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.038s