[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む75 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
473(8): 哀れな素人 2019/08/19(月)19:36 ID:6fjpKkwa(19/25) AAS
sの同値類(の代表元)rや決定番号dは
次のようにいくらでもあるのである(笑
だから時枝戦略は成立しないと前々から言っているのである(笑
s=1、3、7、8、5、6、9、2、0、4、3、3、……
r=9、2、4、4、5、6、9、2、0、4、3、3、……
d=5
s=1、3、7、8、5、6、9、2、0、4、3、3、……
r=3、3、4、8、6、4、9、2、0、4、3、3、……
d=7
475(1): 2019/08/19(月)19:42 ID:hITUikXI(7/10) AAS
>>473
>sの同値類(の代表元)rや決定番号dは
>次のようにいくらでもあるのである
ない sと同値な数列の集まり(=同値類)の中から
1つだけ選ばれた数列が同値類の代表元
478: 哀れな素人 2019/08/19(月)19:55 ID:6fjpKkwa(22/25) AAS
いつておくが>>473のrは代表元のことだぞ(笑
ここで一時間ほど中断(笑
480(2): 2019/08/19(月)19:57 ID:vLbpkjiH(2/2) AAS
>>473
> 1、3、7、8、5、6、9、2、0、4、3、3、……
> 9、2、4、4、5、6、9、2、0、4、3、3、……
> 3、3、4、8、6、4、9、2、0、4、3、3、……
この3つの数列はある同値類の代表元になり得る
しかしこの3つの数列は同じ類に属するから
袋の中に上の3つの内2つ以上が同時に入っていることはない
483: 哀れな素人 2019/08/19(月)21:04 ID:6fjpKkwa(23/25) AAS
>>473を見れば、
100本の数列の中の一本であるsという数列に、
代表元rや決定番号dはいくらでもあることは明白である(笑
だから時枝戦略は成立しないのである(笑
時枝戦略のトリックというか間違いというかインチキは、
sという数列のrやdは一つしかないと考えたことである(笑
もしsという数列にrやdは一つしかないというなら、
具体的にそれを示してもらおう(笑
示すことができたら一億円やろう(笑
512(1): 哀れな素人 2019/08/20(火)08:00 ID:JinqNl0A(2/14) AAS
時枝の間違いは、100本の数列の各列には
完全代表元rが存在すると考えたことである。
いいかえれば、最大のdが存在すると考えたことである。
しかし、>>473を見れば明白だが、
たとえばd=7が最大のdではなく、
d=8、9、……、n、n+1、……
と、いくらでも大きいdが存在するのである(笑
いいかえれば絶対最大唯一のdなど存在しない。
だから時枝戦略は成立しない(笑
時枝は、愚かにも、
絶対最大唯一のdが存在すると考えたのだ(笑
538(1): 哀れな素人 2019/08/20(火)22:17 ID:JinqNl0A(11/14) AAS
100本の数列のどの列にも完全代表元r
などは存在しないのである。
いいかえれば100本の数列のどの列にも
最大の決定番号dなどは存在しない。
それは>>473を見れば明白だ(笑
だから時枝戦略は成立しないのである。
>いま D >= d(s^k) を仮定しよう.
>この仮定が正しい確率は99/100
これは間違いで1/2である(笑
但しD = d(s^k)の場合は無視する(笑
541(2): 哀れな素人 2019/08/20(火)22:47 ID:JinqNl0A(13/14) AAS
>>540
意味不明(笑
どの列にも最大の決定番号などないことは>>473で明白(笑
D >d(s^k) の確率は1/2である(笑
同値類の全パターンを用意するということは
実数列の全パターンを用意することと同じなのである(笑
だから実数列の全パターンが用意できるなら
100本に分けたりしなくても当てられる(笑
552(2): 2019/08/20(火)23:36 ID:hTUmVSnh(19/20) AAS
>>541
>どの列にも最大の決定番号などないことは>>473で明白(笑
決定番号は定義により自然数である。
自然数からなる有限集合は最大値を持つ。
よって100個の決定番号の集合{d1,...,d100} はmaxを持つ。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.036s