[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む75 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
449
(4): 2019/08/19(月)11:11 ID:mDG5H2jQ(6/12) AAS
>>448
>箱を開ける前は当たる確率は1/3であり、
>箱を開けた後は当たる確率は1/2である(笑
>変更したら2/3になるわけではない(笑
モンティ・ホール問題では
初期状態:景品が向こうにあるドアが1つあり、ヤギが向こうにいるドアが2つある。
第一段階:プレーヤーが3つのドアの中から1つのドアをランダムに選ぶ。
第二段階:モンティが残りの2つのドアのうち必ず1つをランダムに選んで開ける。
第二段階での条件:モンティが開けるドアは、必ずヤギの入っているドアである。
第三段階:モンティはプレーヤーにドアを選び直してよいと必ずいう。
第四段階:プレーヤーが選び直すかどうか決める。
と5つの段階が客観的に見て与えられているから、そんな単純な考え方では間違えるのも当然。
450
(2): 哀れな素人 2019/08/19(月)11:32 ID:6fjpKkwa(11/25) AAS
>>449
単純な考え方が正しいのである(笑

あの問題が大論争に発展したのは、
マリリンという女が間違っているからである(笑

午前はここまで(笑
451
(1): 2019/08/19(月)11:35 ID:mDG5H2jQ(7/12) AAS
>>449
そうそう、私がこの前出した、プレーヤーがドアを変更したら景品が当たる確率は 2/3 か 1/2 な。
客観的には、プレーヤーがドアを変更したら景品が当たる確率は、2/3×1+1/3×1/2=2/3+1/6=5/6 になる。
452
(1): 2019/08/19(月)11:50 ID:mDG5H2jQ(8/12) AAS
>>450
>>451>>449でなく、>>450宛て。
まあ、第一段階でプレーヤーが3つのドアの中からヤギが向こうにいる1つのドアを選んだときは、
第四段階でプレーヤーはそのままにして変えなければよく(この段階でプレーヤーに景品が当たる確率は1)、
第一段階でプレーヤーが3つのドアの中から景品が向こうにある1つのドアを選んだときは、
第四段階でプレーヤーは景品が当たる確率が 1/2 の条件の下でドアを変えればよいから、
理論上ではプレーヤーの景品が当たる確率は 5/6 になる。
456
(1): 2019/08/19(月)13:03 ID:mDG5H2jQ(10/12) AAS
>>454
>何でそんな複雑な考え方をするのか(笑
>>449に書いたように、モンティ・ホール問題は初期状態から最終段階に至るまでの間に5つの段階を踏んで、
最終的に最後の第四段階でプレーヤーがドアを買えるかどうか決めることになるから、
プレーヤーが景品を当てる戦略を立てることは可能になっている。
お前さんが私が書いた文章を理解出来ないだけ。

>ドアを開けた後は、
>二つの部屋のどちらかに景品が入っているのだから、
>どちらを選んでも、当たる確率は1/2である(笑
この考え方に従っても、プレーヤーから見たときの最後の段階でプレーヤーが景品を当てる確率は 1/2 になる。
つまり、最後の段階でプレーヤーがドアを変えても、プレーヤーにとって損はしていないことを意味する。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 2.488s*