[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む75 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
315(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/18(日)08:43 ID:CwMq/yUw(5/25) AAS
>>306-307 補足
この程度のことは(確率空間、確率変数)は、確率過程論から自明で
Sergiu Hart氏も当然知っている。「2.箱がn個。確率変数X1,X2,・・・,Xn」までは、書いている
さらに、当然「3.箱が可算無限個。確率変数X1,X2,・・・ →X∞」も知っているが、書かなかったのだろう(^^;
(参考)
スレ62 2chスレ:math
(抜粋)
915 名前:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 投稿日:2019/03/27(水)
Sergiu Hart氏のPDF 外部リンク[pdf]:www.ma.huji.ac.il
このP2に
Remark. When the number of boxes is finite Player 1 can guarantee a win
with probability 1 in game1, and with probability 9/10 in game2, by choosing
the xi independently and uniformly on [0, 1] and {0, 1, ・・・, 9}, respectively.
とある
ここで”independently and uniformly”が、独立同分布(IID)を含意することは、知る人がみればすぐ分かること
で、例えば、{0, 1, ・・・, 9}ならば、的中確率は、1/10(for Player 2)(つまり、出題者Player 1は、確率9/10で勝てる)
つまり、独立同分布(IID)を仮定すれば、どの箱も同じで、例外はない
game1(選択公理を使う)→game2(選択公理を使わない)→boxes is finite (有限の場合は通常確率論通り)
と並べて説明している
まあ、落語の落ちですね。最後”boxes is finite (有限の場合は通常確率論通り)”ですから
ま、確率過程論の知識がある人(落ちこぼれ以外の数学科卒生)なら、独立同分布(IID)で、箱が有限及び無限とも同じ結論になる(通常確率論通り)は自明だし
それは、確率過程論について、上記(>>912)重川先生とか逆瀬川先生(下記)を読めば分かる。読めなければ、時枝不成立は分からないでしょうね〜(^^
しかし、このスレで私が確率過程論をするわけにはいかない。このスレの余白は狭すぎるw(^^
外部リンク[pdf]:www.f.waseda.jp
「確率過程とその応用」管理人 逆瀬川浩孝 早稲田大学
317: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/18(日)08:52 ID:CwMq/yUw(6/25) AAS
>>315 補足
>ここで”independently and uniformly”が、独立同分布(IID)を含意することは、知る人がみればすぐ分かること
いま思うと
「独立同分布(IID」という重要キーワードをわざと
”independently and uniformly”にして
はぐらかしている気もしてきたな〜(^^
378: 2019/08/18(日)19:34 ID:Ok+0eNg3(5/28) AAS
>>315
>まあ、落語の落ちですね。最後”boxes is finite (有限の場合は通常確率論通り)”ですから
バカですか?
有限列の場合は時枝解法が使えないってだけじゃんw
無限列の場合に「勝つ戦略は存在するか?」と問われれば時枝解法一択w
おまえ数学板に来るにはレベル低過ぎるよw チラシの裏でやれw
379: 2019/08/18(日)19:49 ID:Ok+0eNg3(6/28) AAS
>>315
>ま、確率過程論の知識がある人(落ちこぼれ以外の数学科卒生)なら、独立同分布(IID)で、箱が有限及び無限とも同じ結論になる(通常確率論通り)は自明だし
同じになるならそれはダメな戦略ってことじゃんw
「勝てる戦略は存在するか?」という問いに対しておまえは「勝てない戦略の存在」を示しているだけw
何度言わせれば気が済むのか? いいかげん理解しろバカw
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.041s