[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む75 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
717(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/24(土)00:13 ID:9gk+t9xe(1/26) AAS
>>714
>「さて, 1〜100 のいずれかをランダムに選ぶ. 例えばkが選ばれたとせよ. s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない. 」
>100個の決定番号のいずれかをランダムに(一様分布で)選択しているんだがw
ある同値類における決定番号は
代表を選ぶことで決まる
代表は、ある同値類内の元のどれでもよい(下記ご参照)
ところで、時枝の1つの同値類は集合として、非可算の濃度を持つ(∵ 可算無限長の数列の同値類だから)
一方、決定番号dは、自然数だから、可算個しかない
従って、少なくともある1つの決定番号dに対して、その背後に非可算の濃度の代表候補がある
実は、時枝の定義の通り、ある箱に実数R中から数を選んで入れて良いとするならば、入れられる数の候補は非可算の濃度を持つから
2以上の全ての決定番号dの背後には、その背後に非可算の濃度の代表候補がある
(時枝の手法は、世にある全ての数列を分類する前提であることを思い出そう)
なので、何をランダムに選ぶかどうかは知らずw(^^
決定番号は、その背後の非可算の濃度の代表候補を考えれば
自明に、一様分布になどになりようがない
(参考)
外部リンク:ja.wikipedia.org
同値関係
(抜粋)
一つの同値類 X に対して、[x] = X となる S の元 x を1つ定めることを、X の代表元として x をとるという。1つの同値類は、それに含まれている元のうちどれをとっても、それを代表元とする同値類はもとと同じ集合になる(代表元の取替えによって不変である)
724(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/24(土)07:01 ID:9gk+t9xe(2/26) AAS
おは、どうも。スレ主です。
サイコパスのおサルと、High level peopleの残党のサルと、二匹いるらしいが、なかなか区別が難しい(^^
>>716
High level peopleの残党のサルだと思うのだが(^^;
(引用開始)
外部リンク:ja.wikipedia.org
>乱数列(らんすうれつ)とはランダムな数列のこと。
>乱数列の種類
>離散一様分布(整数の一様分布乱数)
↑
時枝解法はこれ
バカザルは理解できないので屁理屈しか言えないw
(引用終り)
それ、”諸刃の剣”ですけど(^^
「乱数列(らんすうれつ)とはランダムな数列のこと」で
その”ランダム”に、リンクが張ってありますよ
で下記なw
外部リンク:ja.wikipedia.org
ランダム
(抜粋)
ランダム(英語: random)とは、事象の発生に法則性(規則性)がなく、予測が不可能(英語版)な状態である[1]。ランダムネス(英語: randomness)、無作為性(むさくいせい)ともいう。
ランダムな入力(乱数発生器(英語版)や擬似乱数発生器など)に依存するモンテカルロ法は、計算科学などの科学において重要な技術である[3]。これに対し、準モンテカルロ法(英語版)では乱数列ではなく一様分布列を使用している。
(引用終り)
ですから、”ランダム”を仮定すれば、「予測が不可能」であって、時枝さんのいう確率99/100とか、1−εにはならない
なお、「準モンテカルロ法(英語版)では乱数列ではなく一様分布列を使用している」という記述から、乱数列と一様分布列とを区別する考えもあるらしいね
727(5): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/24(土)07:08 ID:9gk+t9xe(3/26) AAS
>>718-723
なんか、おっちゃんの証明みたいなことをグダグダ書いているけど、同じく読まないので、あしからずご了承ください。w(^^;
まあ、>>716潰したんで、それで十分でしょ
(”ランダム”を仮定すれば、「予測が不可能」であって、時枝さんのいう確率99/100とか、1−εにはならないってこと)
おサルさんも、そろそろ、i.i.d. 独立同分布(>>709)を理解しましょう
数学科大学4年以上:i.i.d. 独立同分布(>>709)を理解しています
おサルさん:i.i.d. 独立同分布(>>709)を理解していません
731(9): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/24(土)07:26 ID:9gk+t9xe(4/26) AAS
>>725-726
おサルさん、そこ違うよ
みんな*)が問題にしている”非可測”の話は、「代表」の方
( *)Alexander Pruss氏、Tony Huynh氏、確率論の専門家さん など)
つまり、時枝記事では、まず代表rを選んでおきます
(下記時枝記事ご参照)
d(s):s(可算無限数列の集合) → d(自然数の集合)
という関数d(s)があると、時枝さん
で、関数d(s)が、非可測だよと
(>>559より)
”>2個の自然数から1個を選ぶとき、それが唯一の最大元でない確率は1/2以上だ
残念だけどこれが非自明.
hに可測性が保証されないので,d_Xとd_Yの可測性が保証されない
そのためd_Xとd_Yがそもそも分布を持たない可能性すらあるのでP(d_X≧d_Y)≧1/2とはいえないだろう”
ってことね
(参考)
スレ47 2chスレ:math
(数学セミナー201511月号P37 時枝記事より)
(抜粋)
〜は R^N を類別するが,各類から代表を選び,代表系を袋に蓄えておく.
幾何的には商射影 R^N→ R^N/〜の切断を選んだことになる.
任意の実数列s に対し,袋をごそごそさぐってそいつと同値な(同じファイパーの)代表r= r(s)をちょうど一つ取り出せる訳だ.
sとrとがそこから先ずっと一致する番号をsの決定番号と呼び,d = d(s)と記す.
(引用終り)
733: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/24(土)07:34 ID:9gk+t9xe(5/26) AAS
>>731 訂正
d(s):s(可算無限数列の集合) → d(自然数の集合)
↓
d(s):s(可算無限数列の集合(=同値類)) → d(自然数の集合)
ってこと
丁寧に書けばね
分ると思うが
sは、同値類の代表だが、代表元はその同値類のどの元でも可なので(下記ご参照)、上記のようになるんだ
(参考)
外部リンク:ja.wikipedia.org
同値関係
(抜粋)
一つの同値類 X に対して、[x] = X となる S の元 x を1つ定めることを、X の代表元として x をとるという。1つの同値類は、それに含まれている元のうちどれをとっても、それを代表元とする同値類はもとと同じ集合になる(代表元の取替えによって不変である)
740(5): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/24(土)08:16 ID:9gk+t9xe(6/26) AAS
>>731 補足
おサルさんに分り易く説明すると
1)d_Xとd_Yが、試験の点数で、簡単に2つの学級 X,Yで、いずれも平均50点、標準偏差15点の正規分布とするよ
この場合、2つの学級 X,Yから、無作為に一人ずつd_Xとd_Yを選んで、その点数を比較すると
P( d_X>d_Y )= 1/2 が言えるだろう(∵正規分布を仮定しているから)
2)しかし、もしd_Xとd_Yが、自然数N={1,2,・・・n,・・(∞)}(ここに(∞)は分り易く書いただけで、含まないとする)
でNから、無作為に選んだ数とする
d_X=n1,d_Y=n2
m=max(n1,n2)として、自明に、n1<=m かつ n2<=m
ところで、「n1とn2と、どちらが大きいか」という議論は、自然数N中の部分集合で「m以下の集合」での議論になっている
それって、実は、自然数Nから見て、部分集合の「m以下の集合」は零集合なのです
(∵ 自然数Nは可算無限で、「m以下の集合」は有限だから )
3)自然数Nのように、その元nを1と数える数え上げ測度を持つ集合でも、有限部分集合の議論は零集合の中です
で、決定番号の集合はというと、決定番号の裏に代表つまり同値類があって、この同値類は非可算無限集合です
(∵ 可算無限数列の同値類だから)
なので、決定番号dが大きくなると、指数関数的に発散する分布になります(もしこれを分布と呼ぶならですが)
もちろん、この場合も、ある有限なm=max(d1,d2)の中で議論しても、それは零集合の中の議論です
これを、きちんと現代数学のコルモゴロフ流確率論として、扱うのは無理です(∵自然数Nに同じ)
”残念だけどこれが非自明.hに可測性が保証されないので,d_Xとd_Yの可測性が保証されない”と言われています
QED w(^^
741(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/24(土)08:24 ID:9gk+t9xe(7/26) AAS
>>740 補足
(引用開始)
m=max(n1,n2)として、自明に、n1<=m かつ n2<=m
ところで、「n1とn2と、どちらが大きいか」という議論は、自然数N中の部分集合で「m以下の集合」での議論になっている
それって、実は、自然数Nから見て、部分集合の「m以下の集合」は零集合なのです
(∵ 自然数Nは可算無限で、「m以下の集合」は有限だから )
(引用終り)
類似の議論で、代数学で、自然数nの代数的性質を扱うなら、問題なく議論できる
しかし、ことが確率論になると、可測性が問題になり、零集合の中の議論で、「はい、QED、 おしまい」とはならないのです
まあ、おサルには理解出来ないと思うが w(^^;
745(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/24(土)09:14 ID:9gk+t9xe(8/26) AAS
>>740-741 補足
・確率論になると、可測性が問題になり、P(Ω)=1 (Ωは全事象で全体集合)が定義できていないといけない
・ところが、時枝記事の巧妙なところは、いつのまにか、m=max(d1,d,・・・dn)の議論にすり替わって
それって、m有限の零集合の中の議論でしかない。”P(Ω)=1”(無限集合)が、m有限の議論にすり替わっている
・人は、確率論・確率過程論の知識のある、数学科大学4年以上:i.i.d. 独立同分布(>>709)を理解している人は
すぐ、「おかしい」と気付くw(^^
・おサルは無知だから、気付かない
746: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/24(土)09:17 ID:9gk+t9xe(9/26) AAS
>>2 補足
遠隔レスすまん
>私?某大学の数学科卒 修士課程修了ですが何か?
サイコパスのサルは、「数学科卒 修士課程修了」なんてレベルはないよね
せいぜい幼稚園
まあ、某私立大学の数学科だろうけど
お情けで、卒業させてもらったんだろうね
おそらく、底辺大だろう(^^;
750: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/24(土)10:13 ID:9gk+t9xe(10/26) AAS
>>744
>零集合の定義も知らないくせに
なるほど
R中の1点nのルベーグ測度は、0で零集合だが
自然数N中で数え上げ測度で、1点nに測度1を与えると、零集合ではない
但し、自然数Nの測度∞との比は、1点nの測度は、0と考えて良い
これは、「零集合もどき」とでも表現した方がいいかも
つまり、全体の無限集合との対比で、
その中の1つの元の有限測度を0とみなすとき
「零集合もどき」と呼ぶことにしましょう(^^
外部リンク[html]:www.f-denshi.com
3 ルベーグ測度と零集合
f-denshi.com 最終更新日:04/10/17
(抜粋)
カントール集合は,「連続体濃度を持ち,測度がゼロである集合」 の例なのです。このように測度が 0 である集合を零集合(ゼロ集合)といいます。
可算基数をもつ有理数の集合も連続基数をもつカント−ル集合も同じ零集合として一括りにする
( = そして,面積の概念作りの作業から捨て去る)
ことには抵抗感がかなり感じられますが,ルベーグ積分はこのような気持ちの悪いことも礎にしていることを頭の片隅においてもらうため,零集合についてちょっと触れてみました。
765(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/24(土)13:00 ID:9gk+t9xe(11/26) AAS
>>745 補足
>・ところが、時枝記事の巧妙なところは、いつのまにか、m=max(d1,d2,・・・dn)の議論にすり替わって
> それって、m有限の零集合の中の議論でしかない。”P(Ω)=1”(無限集合)が、m有限の議論にすり替わっている
補足します
1)簡単のために、m有限で、有限集合M={1,2,・・・,m}の中で
ランダムに2つの数 d1,d2を選んで、確率P(d1<=d2)を考えましょう
(下記)Paul Bartha氏の論文にならって、二次元測度M^2で考える
二次元集合M^2の数え上げ測度は、m^2 で、集合の元(d1,d2)を考えると
下記Figure 1と類似で、d1<=d2なる領域は、矩形M^2の上半分の三角形で、測度は(M^2)/2
なので、測度論より、確率P(d1<=d2)=1/2
2)それでは、上記1)の議論を、可算無限集合たる自然数Nに拡張したときどうなるか?
自然な考えは、1)の有限の議論のm→∞の極限を、考えることです
そして、極限として、確率P(d1<=d2)=1/2を導くことです
3)しかし、時枝では有限の議論のm→∞の極限を考えても、このような確率計算ができません
(∵ 時枝の議論は、有限の場合には不成立だからです)
ここに、時枝のゴマカシがありますw(^^;
(>>700より)
(参考)
外部リンク:www.mdpi.com
Symmetry and the Brown-Freiling Refutation of the Continuum Hypothesis Paul Bartha 2011
Figure 1
画像リンク
766: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/24(土)13:02 ID:9gk+t9xe(12/26) AAS
>>764
おサルさん、しっかり踊ってね by サル回しのスレ主w(^^;
767(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/24(土)13:06 ID:9gk+t9xe(13/26) AAS
>>765 補足
> 2)それでは、上記1)の議論を、可算無限集合たる自然数Nに拡張したときどうなるか?
おっと、1つ抜かした
「矩形M^2の上半分の三角形で、測度は(M^2)/2」
ここから、確率1/2を導くのは、Mが有限集合の場合は可能
しかし、無限集合では、∞/∞ の不定形になるので
無条件では、確率1/2は導けない
常識だが補足しておく
768(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/24(土)13:17 ID:9gk+t9xe(14/26) AAS
>>706-708
「サイコパスには数学は無理
サイコパスは屁理屈ばかり」
<補足>
1)(サルの)サイコパスは、数学をディベートとしか見てないアホです
”じゃ、貴様の負けじゃんw”(>>706より)とか、アホすぎ
2)ディベートは、他人との議論で、高得点が得られればいいのだが
数学では、それあんまり意味がない
もっと、勝ち負けを離れて、「数理(真実)の探求」という視点を、持たないと
3)(サルの)サイコパスの議論は、(>>706など)単に、他人の論に反論するばかりで
自分の議論をきちんと筋道だてて、「数理(真実)の探求」をして、証明(論証)するという行為が皆無
だから
「サイコパスには数学は無理
サイコパスは屁理屈ばかり」
ということです
QED w(^^
結論は、
・(サルの)サイコパスは、数学落ちこぼれ
・(サルの)サイコパスは、「数学科卒 修士課程修了」なんてレベルはない。せいぜい幼稚園
です
778(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/24(土)16:38 ID:9gk+t9xe(15/26) AAS
>>765>>767 補足
外部リンク:www.mdpi.com
のFigure 1のような二次元 [0,1]^2 で
n次元 [0,1]^n の場合どうか?
正方形に対する、三角形のように
n次立方体対する、n次錐体となる
”n次元的な錐体のn次元的な体積は、「÷3」の部分が「÷n」となる”(下記)
なので、同じ議論で、1/nが成立つ
しかし、これは>>767で示したように、mが有限の場合で
時枝のような、mが有限でない場合には、m→∞の極限を考えるのが普通
しかし、時枝では有限の議論のm→∞の極限を考えても、このような確率計算ができません
(∵ 時枝の議論は、有限の場合には不成立だからです)
ここに、時枝のゴマカシがありますw(^^;
(参考)
外部リンク:dic.pixiv.net
錐体 pixiv百科事典
(抜粋)
概要
円錐や角錐の総称。
円が底面な錐体が円錐で、多角形が底面な錐体が角錐。
体積はどんな錐体でも「底面積×高さ÷3」で求まり、これは積分によって導出される。
n次元版
あらゆるn次元図形に対し、n+1次元的な錐体を考える事もできる。
例えば三角形は線分の錐体に相当するし、正五胞体は正四面体錐の一種と見る事ができる。
n次元的な錐体のn次元的な体積は、「÷3」の部分が「÷n」となる。
779(6): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/24(土)16:47 ID:9gk+t9xe(16/26) AAS
再度言おう
(>>411より)
時枝記事の手法など
プロ数学者は、だれも相手にしない
不成立に見えて、自明に不成立だから w(^^
(>>377より)
i.i.d. 独立同分布
(説明)
1.箱が1個。確率変数X1
サイコロ,コインなら、確率空間は、下記の定義の通り。
サイコロΩ={1,2,3,4,5,6}で、1〜6の数が箱に入り、各確率1/6
コイン1枚なら、Ω={0,1}で、0か1の数が箱に入り、各確率1/2
2.箱がn個。確率変数X1,X2,・・・,Xn
i.i.d. 独立同分布とすると、各箱は上記1の通り
3.箱が可算無限個。確率変数X1,X2,・・・ →X∞
i.i.d. 独立同分布とすると、各箱は上記1の通り
4.時枝は、これで尽きている。上記1〜3のどの箱の確率変数も例外なし!
QED(^^
外部リンク:mathtrain.jp
確率空間の定義と具体例(サイコロ,コイン) | 高校数学の美しい物語 2015/11/06
補足(>>347より)
ここに書いた1〜3は
Alexander Pruss氏にしろ、Tony Huynh氏にしろ、確率論の専門家さん(>>559- )にしろ、Sergiu Hart氏にしろ
当然既知だよ
一方、おサルとDenisは分ってない
おサルとDenis
I think it is ok, because the only probability measure we need is uniform probability on {0,1,…,N-1}
ヒト(含むおれ(^^; )
but other people argue it's not ok, because we would need to define a measure on sequences,
(参考)
外部リンク:mathoverflow.net
Probabilities in a riddle involving axiom of choice asked Dec 9 '13
(抜粋)
asked Dec 9 '13 at 16:16 Denis
I think it is ok, because the only probability measure we need is uniform probability on {0,1,…,N-1}, but other people argue it's not ok, because we would need to define a measure on sequences, and moreover axiom of choice messes everything up.
780(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/24(土)16:50 ID:9gk+t9xe(17/26) AAS
>>779 補足
>but other people argue it's not ok, because we would need to define a measure on sequences,
ヒトは、非可測だから、
”I think it is ok, because the only probability measure we need is uniform probability on {0,1,…,N-1}”
は、不成立だと言いますw(^^;
787(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/24(土)17:16 ID:9gk+t9xe(18/26) AAS
>>754
>>だから列のindexが確率変数なのである。
>数学科の学生なら1年だろうが4年だろうがそう読み取る
アホやね
1)
いま、有限 100n 個の箱がある
n個の列を100列作ることができる
「 1〜100 のいずれかをランダムに選ぶ」も可能
2)
しかし、有限の100n個の箱に対しては、
列のindex おサルとDenisの言葉(>>779)でいえば
”the only probability measure we need is uniform probability on {0,1,…,N-1}”
ですが、列のindex {0,1,…,N-1}
こんなクソみたいな 列のindex {0,1,…,N-1}は全く機能しませんw
∵ 箱の数が有限だから
3)
では、個の箱が無限になったときのみ、なぜ確率の扱いが変わるのか?
それが、時枝のマジックで、”同値類と代表と決定番号”を使うと言いたいのだろうが
この時枝のマジックを打ち破る反論が、プロ数学者の言う”それ非可測でしょ”の一言だよ
以上
791: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/24(土)18:52 ID:9gk+t9xe(19/26) AAS
数学セミナー2019年9月号にも記事があるらしい(後述)(^^;
外部リンク[html]:www.asahi.com
朝日新聞デジタル 立体の「もと」大発見 2012/05/03
(抜粋)
立体の世界にも、水素や酸素のような「元素」があった。ある種の立体の仲間は、1種類の五面体の組み合わせだけで作れる。複数の「元素」からできた「化合物」の立体グループもある。「立体の元素」なんて聞いたことがないが、最近、日本の数学愛好家と数学者のチームが見つけた。ひょっとして世紀の大発見?
■平行多面体は元素数1である
「立体の世界にも元素がある」と考え、いくつかの定理を証明したのは、長髪にバンダナ姿で知られる数学者の秋山仁さんと、宮城県立がんセンター病理部長でアマチュア数学者の佐藤郁郎さんだ。秋山さんがモスクワやブダペストの学会で発表すると評判は上々で、論文はハンガリーの数学専門誌に掲載されることが決まっているという。
元素の数が1とわかったのは、「平行多面体」と呼ばれる立体グループだ。代表的なものは立方体。前後左右縦横とコピーをどんどんつないでいくと、空間を埋め尽くすことができる特徴を持つものだ。このグループの仲間はすべて、ある五面体から作れる。
すべてといっても平行多面体は、実は五つしかない。ロシアの結晶学者フョードロフが1885年に証明した。結晶の中を見る技術など何もなかった時代に生まれた、見事な定理だ。
それから120年余たって、予想外の新事実が飛び出した。発見のきっかけを作ったのは、山口県在住で中学校に木製の正多面体セットを贈る活動をしている中川宏さん(53)だった。
外部リンク:www.ohmiya-h.spec.ed.jp
立体の「もと」大発見 科学通信 大宮高校 20120509
外部リンク[html]:woodenpolyhedra.web.fc2.com
積み木インテリアギャラリー
画像リンク
外部リンク[html]:www.pot.co.jp
2019-08-13 [山田 信也] ポットの日誌
数学セミナー2019年9月号[日本評論社]●デザインの仕事
インタビュー連載で多面体木工の職人さんのお話
外部リンク[html]:woodenpolyhedra.web.fc2.com
多面体木工法
793(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/24(土)20:01 ID:9gk+t9xe(20/26) AAS
メモ
外部リンク[htm]:www5b.biglobe.ne.jp
数学の研究 杉岡幹生
不明とされてきた奇数ゼータ特殊値を独自の手法
で見出しました。(ゼータの特殊値問題は現代数学の難題)
「ゼータ惑星」で2次体との関連を発見。2次体に付随するL(χ,s)の全ての特殊値を正確に求める方法(予想)を見出した。
数学の巨人(”日本のオイラー”)・佐藤郁郎氏が本結果を紹介して下さっています!
独自の手法 テイラーシステム と フーリエシステムを開発。-->ゼータ系の彗星群
テイラーシステムとフーリエシステムは、超難問ゼータ特殊値をいとも簡単に出す強力な手法である。
外部リンク:ikuro-kotaro.sakura.ne.jp/index.htm
佐藤郁郎氏
外部リンク:ikuro-kotaro.sakura.ne.jp/koramu.htm
数学コラム 佐藤郁郎氏
外部リンク:k1segawa.exblog.jp/239235248/
クォータニオン (数学者佐藤郁郎先生) (4/26) k1segawa.exblog.jp 2019年 04月 26日
クォータニオンについて、以前超複素数についての記事を引用したサイト様が、実は数学者佐藤郁郎先生だったことが分かった。
この方のサイトがYahoo! Geocitiesから移行しており、数学のコラムが大変勉強になるので、以下に移行先を示す。
ikuro's-homepage
以前の記事は、西暦下2桁ごとにページ末尾にリンクがあり、超複素数の世界は1997年の「97」というリンクの中にある。
794: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/24(土)20:06 ID:9gk+t9xe(21/26) AAS
>>792>>730
ご苦労さん(^^;
>>738
哀れな素人さん、どうも。スレ主です。
(引用開始)
ID:AQbyp3dO
これはサル石とは別人だろうが、
時枝成立と思っている時点でサル石と同レベル(笑
(引用終り)
そのようですな(^^
795(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/24(土)20:10 ID:9gk+t9xe(22/26) AAS
>>792
>> 箱が無限になったときのみ、なぜ確率の扱いが変わるのか?
>別に扱いは変わっていないよ
(>>779より)
i.i.d. 独立同分布
(説明)
1.箱が1個。確率変数X1
サイコロ,コインなら、確率空間は、下記の定義の通り。
サイコロΩ={1,2,3,4,5,6}で、1〜6の数が箱に入り、各確率1/6
コイン1枚なら、Ω={0,1}で、0か1の数が箱に入り、各確率1/2
2.箱がn個。確率変数X1,X2,・・・,Xn
i.i.d. 独立同分布とすると、各箱は上記1の通り
(引用終り)
でしょ?(^^
で、「別に扱いは変わっていない」から
で、確率論・確率過程論のテキストのどこにでも書いてありますが
(引用再開)
3.箱が可算無限個。確率変数X1,X2,・・・ →X∞
i.i.d. 独立同分布とすると、各箱は上記1の通り
4.時枝は、これで尽きている。上記1〜3のどの箱の確率変数も例外なし!
(引用終り)
以上
QED (^^;
797: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/24(土)21:09 ID:9gk+t9xe(23/26) AAS
>>793
メモ 追加
外部リンク[htm]:cosmos.art.coocan.jp
数学研究ノート Sugimoto
外部リンク:cosmos.art.coocan.jp
数学研究ノート PDF
外部リンク[pdf]:cosmos.art.coocan.jp
三角関数の乗積と階乗
外部リンク[htm]:cosmos.art.coocan.jp
ゼータ関数の奇数値ζ(2k+1)
上の式は黒川信重教授による三重三角関数を用いた表現と同じものである。[3]のページ16と19を参照。
同じものとの指摘は杉岡氏よりありました。
三重三角関数
これを展開すると先程の式になる。結局
オイラーによる積分式 → ζ(2n)による級数式 → 三重三角関数による表現式
と変形されてきたことになる。
驚いたことにオイラーは私が得た級数に更に似た級数を導いていたことがわかった。日本数学協会の機関誌である「数学文化」の第1号は円周率πの特集号であるが、その中の「逆数の冪級数と元の級数の間の見事な関係についての考察」(高田加代子/訳)によるとオイラーは次の式を示している。116ページの式であるが元の式を少しだけ変形している。
外部リンク[html]:hirokuro.e-whs.net
私の発見した数学公式 by hirokuro
外部リンク[html]:hirokuro.e-whs.net
リーマン証明から派生した問題を証明する updated 2019.04.17
803(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/24(土)23:07 ID:9gk+t9xe(24/26) AAS
>>798
>> 箱が可算無限個。確率変数X1,X2,・・・ →X∞
>箱が可算無限個あり全ての箱の中身は実数(= 確率1)
有限個でも同じ
箱が有限個。確率変数X1,X2,・・・ →Xn
箱が有限個あり全ての箱の中身は実数(= 確率1)
それで、箱を確率変数 X1,X2,・・・Xnとして扱える
そのことは、どんな確率論・確率過程論にも書いてある
804: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/24(土)23:10 ID:9gk+t9xe(25/26) AAS
哀れな素人さん、どうも。スレ主です。
>>800
(引用開始)
>バカ過ぎて話にならない
それはお前だろが(笑
どんなにスレ主に噛みついたところで、
時枝成立と自信満々に書いてきたお前の方がバカだった
という事実は覆らない(笑
少なくとも時枝問題ではお前の負け(笑
(引用終り)
よくお分かりですね
その通りです
”どんなにスレ主に噛みついたところで”
墓穴を掘って、穴を大きくしているだけにすぎないw
805: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/24(土)23:14 ID:9gk+t9xe(26/26) AAS
>>801-802
哀れな素人さん、どうも。スレ主です。
(引用開始)
お前がいなくなればスレ主は読者もいないのに
コピペの大量投稿をするだけになるだろう(笑
なぜならスレ主は読者がいてもいなくても
コピペを投稿するからだ(笑
だからこのスレは消滅しない(笑
だからスレを廃止せよと叫んでも無駄(笑
しかしそれでもこのスレはなくならない(笑
なぜなら読者がいなくなっても、
スレ主は自分の趣味で、コピペの大量投稿を
いつまでも延々と続けるだろうから(笑
(引用終り)
よくお分かりですね
その通りですよw(^^;
まあ、サルには分らないんだろうね
適当にあしらって
踊らせてやりますよw
枯れ木もサルも、山の賑わいです(^^
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.073s