[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む75 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む75 http://rio2016.5ch.net/test/read.cgi/math/1565872684/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
703: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/08/23(金) 17:36:11.91 ID:1bhuzzzJ >>702 つづき However, in a recent work, "Solving the hard problem of Bertrand's paradox",[10] Diederik Aerts and Massimiliano Sassoli de Bianchi consider that a mixed strategy is necessary to tackle Bertrand's paradox. According to these authors, the problem needs first to be disambiguated by specifying in a very clear way the nature of the entity which is subjected to the randomization, and only once this is done the problem can be considered to be a well-posed one, in the Jaynes sense, so that the principle of maximum ignorance can be used to solve it. To this end, and since the problem doesn't specify how the chord has to be selected, the principle needs to be applied not at the level of the different possible choices of a chord, but at the much deeper level of the different possible ways of choosing a chord. This requires the calculation of a meta average over all the possible ways of selecting a chord, which the authors call a universal average. To handle it, they use a discretization method inspired by what is done in the definition of the probability law in the Wiener processes. The result they obtain is in agreement with the numerical result of Jaynes, although their well-posed problem is different from that of Jaynes. (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1565872684/703
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 299 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.015s