[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む75 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む75 http://rio2016.5ch.net/test/read.cgi/math/1565872684/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
435: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/08/19(月) 10:02:02.15 ID:eIAyJJOc >>396 >ブラリ=フォルティ メモ https://ja.wikipedia.org/wiki/%E3%83%96%E3%83%A9%E3%83%AA%EF%BC%9D%E3%83%95%E3%82%A9%E3%83%AB%E3%83%86%E3%82%A3%E3%81%AE%E3%83%91%E3%83%A9%E3%83%89%E3%83%83%E3%82%AF%E3%82%B9 ブラリ=フォルティのパラドックス (抜粋) ブラリ=フォルティのパラドックス(Burali-Forti paradox)とは、数学の集合論におけるパラドックスの一つであり、「全ての順序数の集合」という概念を素朴に導入すると矛盾が起こるという主張。即ちそのような存在を許す体系は自己矛盾していることを示す。 フォン・ノイマン順序数を用いた説明 矛盾の原因は、全ての順序数の集合 Ω が順序数としての性質を全て満たすが故に、それ自体がまた順序数と看做されねばならないことにある。 従って、その後続順序数 Ω +1を構成することができ、これは Ω よりも厳密に大きい。 ところが、定義によりこの順序数もまた Ω } Ω の元でなければならない。ゆえに Ω <Ω +1 =< Ω . 順序数を全ての先行する順序数の集合であるとするフォン・ノイマンの定義を用いるならば、ある順序数 α よりも小さな全ての順序数の順序型は α 自身になるという主張は真でなければならない。 従ってフォン・ノイマン順序数の「集まり」は、ラッセルのパラドックスに出てくる「集まり」と同様に、古典論理による集合論における「集合」と見なすことはできない。 しかしNFにおいては、順序型の集まり(整列集合の順序同型に関する同値類全体)は実際に集合であり、 Ω よりも小さな順序数の順序型は実は Ω とは異なるという形でパラドックスは回避される。 ZFCにおけるパラドックスの解決 現代的な公理的集合論においては、無制限な包括原理、つまり「性質 P} Pを満たす全てのものの集合」というような集合の構成を単純に禁止することでこの矛盾を回避している。 例えばゴットロープ・フレーゲの公理系ではこれはまだ禁止されていなかった。 なお、NFでは異なった解決法が採られている。 歴史 ブラリ=フォルティのパラドックスという名称は1897年にこれを発見したチェザーレ・ブラリ=フォルティに由来する。 但し異説があり、グレゴリー・チャイティンは本当の発見者はバートランド・ラッセルだと述べている[1]。 http://rio2016.5ch.net/test/read.cgi/math/1565872684/435
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 567 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.019s