[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 (658レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
554(2): ◆QZaw55cn4c 2018/01/17(水)12:54 ID:LVXHtTKV(1) AAS
>>550
そのハーディ・リトルウッド予想は、すでにここに書かれているくらい有名ですよ
外部リンク:ja.wikisource.org
それとは別のものだと思います。
361(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2018/01/10(水)19:35 ID:xixJS48Q(3/11) AAS
>>359
どうも。スレ主です。
>さすがに80ものレス追う気せんわ
まあ、そうだろうね。論争当事者でなければ、レス追う気せんだろう
で、まあ、下記辺りが、彼の主張の中核だろうね
(前スレ)
「564 名前:132人目の素数さん[] 投稿日:2017/12/26(火) 12:39:46.63 ID:bh2BICch [2/4]
もともと取れないからこそ背理法が効くわけです
可算集合の補集合で微分可能→ある開区間で連続→矛盾→可算集合の補集合で微分可能ではない
という流れですよ
ある開区間で連続以降の論証に持ち込むのに
可算集合の補集合で微分可能→ある開区間で連続
の論証が最も重要です
565 返信:132人目の素数さん[] 投稿日:2017/12/26(火) 12:55:35.93 ID:bh2BICch [3/4]
>>562
> 例えば、>>554に示したように、”無理数で可微分、dense(稠密)な有理点のみ微分不可の函数は構成あり”(>>506)で、
> この背理法の論法が正しいならば、「微分可能なある区間(a, b)が取れないから(取れるとすると矛盾するから)、このような関数は存在しない」という結論が、導かれてしまう(本来有理点は稠密であるから、この背理法の論法自身がおかしい)
その関数は連続関数なのでは?それに微分可能な区間が取れないということからはそのような関数の存在も許されるということしか言えませんよ
566 名前:132人目の素数さん[] 投稿日:2017/12/26(火) 12:57:59.52 ID:bh2BICch [4/4]
許されるは変でした
許されないとは言えない
ですか」
(引用終り)
以上
555: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2018/01/17(水)14:28 ID:RtU9EWnx(5/5) AAS
>>554
C++さん、どうもスレ主です。
コメントありがとう。
そのページは、高木先生の本ですね
えーと、>>550引用の中に
「三論文の付録に15個もの予想が載せられているが、
それらを総称してハーディ・リトルウッド予想と呼ぶ。」
とあるでしょ?
この15個の予想の中のどれかが、一つは高木先生の書かれている(世間で)一番有名なハーディ・リトルウッド予想ですね。
おっちゃんのいうあまり有名でない、
”リトルウッドの予想は無理数の有理近似 1/√5 で表せる”の方は、和文検索ではヒットしないように思えてきました。
おそらく、英文キーワードで適切なものを見つけないと、難しいかなと思います。(^^
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.046s