[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 (658レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
191: 2018/01/05(金)23:50:30.62 ID:Kf9KFuTj(1) AAS
時枝を分からない男は定理1.7も分からないという分かりやすい結果でした
215(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2018/01/07(日)12:00:56.62 ID:2l42E8SE(6/29) AAS
>>214 つづき
【3】ディオファントス近似と位数
実数xが無限に多くのqに対して
||qx||<q^(1-α)
となるとき,位数αまで近似可能といいます.そして,α>2となる実数は存在し,そのような実数全体のハウスドルフ次元は2/αであることが証明されています(Jarnikの定理).
(引用終り)
つづく
278(1): 2018/01/08(月)19:12:07.62 ID:bY6nKX5P(3/3) AAS
εδを理解せざれば自ずと解析は全滅
解析が全滅なれば自ずと位相は全滅
353(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2018/01/10(水)13:53:48.62 ID:vsfEZQC9(12/17) AAS
>>350
<参考>
外部リンク:detail.chiebukuro.yahoo.co.jp
ローマ帝国がキリスト教化しなかったら、人類の科学技術は1000年くらい早く今のレベルに到達していたというのは本当ですか? rmcgkfさん yahoo 2011/5/13
(抜粋)
ベストアンサーに選ばれた回答 xiaomaoさん 2011/5/14
古代ローマ人の頭が良かったというより、キリスト教が「疑うこと」を悪と見なしたため、古代ローマ時代に獲得した技術が失われ、中世の時代の技術発展が停滞したからです。
例えて言うなら、古代ローマ時代までの人たちが順調に積み重ねていた積み木が崩れて、またゼロからやり直しになったんです。
積み木が崩れることが無く、そのまま順調に積み重ねていたらきっと1000年くらいは早くなっただろう・・・という意味です。
科学技術というのは「あの太陽とはいったい何なのだろう?」と疑うところから出発します。しかし、キリスト教では世界というのは聖書に書いてある通り神が作ったものであり、それを疑い実験しようものなら神を試す行為として糾弾されました。
そのため、技術の発展が止まってしまったんです。
それに加えて、ローマ時代の文献はラテン語で書かれていたのですが、聖職者はラテン語を神学を学ぶ為だけのものとして独占してしまったんです。そのため、古代ローマ人が培った技術を読めるものがいなくなって失われてしまいました。ちなみに、後にそれはおかしいということで、ラテン語で文献を読む人たちが出てきて技術を復興します。それがルネサンスです。
失われてしまった技術の例としては、都市に完備された上下水道網、各都市をつなぐ舗装された幹線道路、
コンスタンティノポリスのような巨大かつ堅固な城壁を築く築城技術、それを破ることが出来るような精度の高い投石器や様々な力学を駆使した攻城兵器、
「アンティキティラ島の機械」を作ることが出来るほどの天文知識と機械技術、現代にも見劣りしない「ミロのヴィーナス」のような美術・・・などなどキリがありません。
なんかこう書くとキリスト教が悪いように見えてしまいますが、この中世の時代を当のキリスト教徒である西洋人たち自身が「暗黒の時代」と呼び、現代では戒めとしています。そういう反省し教訓とする姿勢は見習うべきものであるでしょう。
(引用終わり)
つづく
367(5): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2018/01/10(水)21:47:52.62 ID:xixJS48Q(7/11) AAS
>>366 つづき
さて、上記と、「定理1.7 (422 に書いた定理)」との間をつなぐために、上記のThe modefied ruler functionのさらなる変形を考えてみた
The modefied ruler function f is defined by
f(x) = 0 if x is irrational,
f(0) = 1, and
(さらに有理数で場合けして)
f(x) = 0 if q> m, x = p/q ∈Q
f(x) = 1/w(q) if q<=m, x = p/q ∈Q
where p and q are relatively prime integers with q > 0.
また、他の条件は、すべて上記に同じ
まあ、要するに、分母q がある値m以下の場合のみ、1/w(q)とする。分母q がある値m超えの場合は、値を0に取る
そうすると、不連続点は、分母q がある値m以下の場合のみの有限個になる
この場合、「定理1.7 (422 に書いた定理)」が成り立ち
”R−Bf が内点を持たない閉集合の(有限個の)可算和で被覆でき、 f はある開区間の上でリプシッツ連続である.”となる
(細かい証明は略す)
つづく
460: 2018/01/13(土)19:11:43.62 ID:sUwT3lGp(1) AAS
有理数に入り切らない数
564(1): 2018/01/18(木)10:17:40.62 ID:SyERiWTG(1/3) AAS
おっちゃんです。
>”リトルウッドの予想は無理数の有理近似 1/√5 で表せる”
スレ主が定理1.7を否定していてもおかしくない状態ということですな。
スレ主は ε-N 或いは実数論から。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.045s