[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 (658レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 http://rio2016.5ch.net/test/read.cgi/math/1514376850/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
86: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/01(月) 19:50:40.49 ID:dCRrvhl7 Thomae(「ポップコーン」)関数の絵が面白いので、ご紹介。 https://arxiv.org/abs/1702.06757 https://arxiv.org/pdf/1702.06757 Number-theoretic aspects of 1D localization: "popcorn function" with Lifshitz tails and its continuous approximation by the Dedekind eta S. Nechaev, K. Polovnikov (Submitted on 22 Feb 2017 (v1), last revised 26 Feb 2017 (this version, v2)) (抜粋) We discuss the number-theoretic properties of distributions appearing in physical systems when an observable is a quotient of two independent exponentially weighted integers. The spectral density of ensemble of linear polymer chains distributed with the law ?fL (0<f<1), where L is the chain length, serves as a particular example. At f→1, the spectral density can be expressed through the discontinuous at all rational points, Thomae ("popcorn") function. We suggest a continuous approximation of the popcorn function, based on the Dedekind η-function near the real axis. Moreover, we provide simple arguments, based on the "Euclid orchard" construction, that demonstrate the presence of Lifshitz tails, typical for the 1D Anderson localization, at the spectral edges. We emphasize that the ultrametric structure of the spectral density is ultimately connected with number-theoretic relations on asymptotic modular functions. We also pay attention to connection of the Dedekind η-function near the real axis to invariant measures of some continued fractions studied by Borwein and Borwein in 1993. (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1514376850/86
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 572 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.012s