[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 (658レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 http://rio2016.5ch.net/test/read.cgi/math/1514376850/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
504: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/01/14(日) 19:26:27.66 ID:fNVDpqMq >>503 つづき 一般化[編集] エタール・コホモロジー上のガロア表現に含まれるガロア群のフロベニウス元の分布が、一般化と考えられる。特に、種数が n > 1 の曲線についての予想がある。 ニック・カッツ(英語版)(Nick Katz)とピーター・サルナック(Peter Sarnak)により開発されたランダム行列モデル[11] では、フロベニウス元の(ユニタリ化された)特性方程式と、コンパクトリー群(compact Lie group) USp(2n) = Sp(n) 上
のリー群の共役類との間に対応関係を示した。 従って、USp(2n) 上のハール測度は分布を与えると予想され、古典的な場合は USp(2) = SU(2) である。 より詳細な問題[編集] さらに精密な予想として、1976年のサージ・ラング(Serge Lang)とハイル・トロッター(ドイツ語版)(Hale Trotter)によるラング・トロッター予想(Lang?Trotter conjecture)は、公式の中に現れるフロベニウス元のトレースである値 ap が、素数 p に対し決まると、漸近的な数が存在すると言う予想である。[12] 典型的な例(虚数乗法を持たず、かつ trace ≠ 0)では、X についての p
に対する数値は、ある特別の定数 c が存在して、漸近的に {\displaystyle c{\sqrt {X}}/\log X\ } {\displaystyle c{\sqrt {X}}/\log X\ } に近づく。ニール・コブリッツ(英語版)(Neal Koblitz)は、1988年、楕円曲線暗号に動機をもって、素数 q の場合の、Ep 上の点の数についての詳細な予想を提示した。[13] ラング・トロッター予想は、原始根についてのアルティンの予想(英語版)(Artin's conjecture on primitive roots)の類似であり、1977年に提唱された。 (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1514376850/504
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 154 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.008s