[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む49 (658レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
509(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2018/01/14(日)20:13 ID:fNVDpqMq(31/38) AAS
>>505 補足
外部リンク:www.math.kyoto-u.ac.jp (注**
楕円曲線と保型形式, 佐藤‐テイト予想,直角三角形の面積とバーチ‐スイナートン=ダイヤー予想 伊藤哲史 2009
外部リンク[pdf]:www.math.kyoto-u.ac.jp (注*
佐藤‐テイト予想の解決と展望 ? 非可換類体論の進展 伊藤哲史 2009
(上と同じだが、念のため 外部リンク[pdf]:mathsoc.jp 佐藤‐テイト予想の解決と展望 ? 非可換類体論の進展 伊藤哲史 2009 )
外部リンク[html]:www.math.kyoto-u.ac.jp
研究集会について 伊藤哲史 京都大学数学教室
2009年3月26日(木) : 東大駒場キャンパスで行われる日本数学会(年会)で企画特別講演「佐藤‐テイト予想の解決と展望」をすることになりました(終了しました).
講演のアブストラクトはここ(PDFファイル, 日本語, 15ページ), (注*:上記URL)
講演に使ったスライド資料はここ(PDFファイル, 日本語, 38ページ)です. (注**:上記URL)
詳しくは日本数学会2009年3月年会のホームページおよび日本数学会のホームページをご覧ください.(追記 : 後日,講演のビデオ映像が日本数学会のホームページから見られるようになるそうです.)
つづく
510(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2018/01/14(日)20:15 ID:fNVDpqMq(32/38) AAS
>>509 つづき
外部リンク[html]:www.math.kyoto-u.ac.jp
講義のページ 伊藤哲史 京都大学数学教室
2009年度の授業
前半(伊藤担当分)のレジュメ:楕円曲線の数論幾何
三次式で定義された曲線を楕円曲線という.楕円曲線は,一次式で定義された直線, 二次式で定義された円・楕円・放物線・双曲線よりもほんの少しだけ複雑な対象だが, その単純な定義からは想像できないほど豊かな性質を持っている.
未解決の問題も多い. この講義では,予備知識を仮定せず, 具体的な計算を通して楕円曲線のさまざまな整数論的性質を論じる. また,保型形式,ガロア表現,佐藤‐テイト予想などの現代数学の深い理論とどのように つながっているかについても紹介したいと思う.
配布物
・4月27日配布プリント(PDF) : 楕円曲線の有理点は(見かけ以上に)難しい,階数28以上の楕円曲線
・6月8日配布プリント(PDF) : 楕円曲線上の離散対数問題,10万ドルの懸賞問題(ECCp-359)
・6月15日配布プリント(PDF) : 楕円曲線と保型形式, 佐藤‐テイト予想,直角三角形の面積とバーチ‐スイナートン=ダイヤー予想
・レポート問題(6月8日配布) (PDF) : 提出先:数学教室事務室(理学部3号館1階),締め切り:7月13日(月), 17:00 (この講義の単位を取得するためには,宍倉先生のレポート問題にも解答する必要があるので注意すること.)
以上
511: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2018/01/14(日)20:16 ID:fNVDpqMq(33/38) AAS
>>510 補足
配布プリント(PDF) のリンクは省略した
興味があるなら自分で頼む(^^
512: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2018/01/14(日)20:20 ID:fNVDpqMq(34/38) AAS
>>508
あんたは・・・、「読まない」じゃなく・・・、「読めない」・・・だろ?(^^
513(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2018/01/14(日)20:24 ID:fNVDpqMq(35/38) AAS
>>492
非可換類体論は、また範囲広すぎだろうな・・(^^
外部リンク:ja.wikipedia.org
非可換類体論
(抜粋)
数学において、非可換類体論(ひかかんるいたいろん、英: non-abelian class field theory)は、類体論の結果、任意の代数体 K のアーベル拡大についての比較的完全で古典的な一連の結果の、一般のガロワ拡大 L/K への拡張を意味するキャッチフレーズである。
類体論は1930年頃には本質的には知られるところとなったが、対応する非可換な理論は確定的で一般的に受け入れられた定式化には未だに至っていない[1]。
つづく
514: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2018/01/14(日)20:25 ID:fNVDpqMq(36/38) AAS
>>513 つづき
歴史[編集]
群コホモロジーのことばで類体論を表すことは、主に1940年代に、クロード・シュヴァレー (Claude Chevalley) やエミール・アルティン (Emil Artin)、他の数学者により進められ、イデール類群の群コホモロジーを用いた中心的な結果の定式化に至った。
コホモロジー的アプローチによる定理は、L/K のガロア群 G が可換か否かに依存しない。しかしこの理論は、求められている非可換の理論とは決して見なされていない。
このことの第一の理由は、コホモロジーの理論がガロワ拡大における素イデアルの分解に関して新たな情報をもたらさなかったことである。非可換類体論の目標を説明する一般的な方法は、そのような分解の法則を述べるより明示的な方法を提供するべきであるということである[2]。
したがって、コホモロジー的アプローチは、非可換類体論の定式化においてさえ、あまり役に立たない。歴史的には、ディリクレ級数を使わずに、言い換えると L 関数を使わずに、類体論の証明を書き下すというシュヴァレーの望みがあった。
類体論の主要定理の最初の証明は、2つの「不等式」を要素として構成された(ガロア理論の基本定理の今では与えられた証明と同じ構造であるが、はるかに複雑である)。2つの不等式のうちの1つが、L 関数を用いる議論を含んでいた[3]。
後に、この発展とは逆に、アルティンの相互法則を非可換な場合へ拡張するためには、アルティンの L 関数を表現する新しい方法を探し求めることが実は本質的であるということが認識された。
この大きな志を持つ現在の定式化は、ラングランズ・プログラムによる。その基礎にあるのは、アルティンの L 関数は保型形式の L 関数でもあるという信念である[4]。21世紀初頭の時点では、これが最も広く専門家に受け入れられている非可換類体論の概念の定式化である[5]。
(引用終り)
以上
516: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2018/01/14(日)20:28 ID:fNVDpqMq(37/38) AAS
とりあえずは、こんなところで、お茶を濁しておくよ(^^
517(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2018/01/14(日)20:33 ID:fNVDpqMq(38/38) AAS
>>515
ああ、確かに、中身はそれほど熱心に読んで無いが・・・
コピペするときに、一応ざっとは読んで、核心部分をコピペしているんだ
なので、外部リンク:www.axfc.net 「定理1.7 (422 に書いた定理)」の証明(>>145)のときも、
”この定理は、いままで読んだ「Ruler Function」の話と合わない”ということだけは、すぐ分ったよ(^^
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.782s