[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む46 (692レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
75(4): 2017/11/12(日)10:37 ID:tybpW7Vy(2/7) AAS
>>70
ん?私は当然答えを知っているが?
>>72
>つまらん出題
もしかして、答えが分からないのかな?
ということで
>>1への問題(大学1年程度)
Q1. [0,1]上至るところで不連続な関数を1つ示せ
Q2. [0,1]上の有理数で不連続、無理数で連続な関数を1つ示せ
Q3. [0,1]上の有理数で不連続、無理数で微分可能(当然連続)な関数を1つ示せ
76: 2017/11/12(日)10:43 ID:tybpW7Vy(3/7) AAS
>>75
>>1へのヒント
無理数上での値は定数、としてよい
77(1): 2017/11/12(日)10:53 ID:tybpW7Vy(4/7) AAS
>>75
Q1、Q2は検索すれば見つかる
Q3は、とある有名なテクストに載っている
ま、どうせ考えても思いつかないんだから、
必死でサーチするんだね
146(5): 2017/11/14(火)06:31 ID:IDi6PSmH(1/4) AAS
>>142
なんだ、結局分からないんだw
ところで
>>75
>Q3. [0,1]上の有理数で不連続、無理数で微分可能(当然連続)な関数を1つ示せ
>>77
>Q3は、とある有名なテクストに載っている
ハイラー、ヴァンナーの「解析教程」下に
有理数rが既約分数p/qで表されるとき、1/q^2 無理数か整数で0
という関数がx=0(より一般にはxが整数のとき)で微分可能
という証明が出ているが、無理数の箇所については言及してない
418(1): 2017/11/20(月)11:35 ID:Brtx3QWc(1/5) AAS
>>397-398
おっちゃんです。
>関数を f(x) を挙げるだけなら、出来た(>>153の通り)
>が、証明はできなかったね(^^
残念でした。私が考えていた f(x) は>>153の関数ではございません。最初に想定していた
>区間 [0,1] において、xが有理数のとき不連続、xが無理数のとき微分可能
>となるような[0,1] で定義された関数 f(x) を挙げる問題
つまり本を正せば、>>75の
>Q3. [0,1]上の有理数で不連続、無理数で微分可能(当然連続)な関数を1つ示せ
というのは、
1):実関数 f(x) は閉区間 I=[0,1] を定義域とし、
2):任意の点 x=p/q∈Q∩I (p、qは互いに素) で f(p/q) は不連続で、
3):任意の点 x∈(R\Q)∩I で f(x) は微分可能である。
以上の1)、2)、3)の3条件を満たすような実関数 f(x) を挙げてε-δで示せ
というモノだったんだよ。>>75はそういう意味で出題されていたとも読み取れる。
条件2)や条件3)の「任意の」の部分を「或る」に変えたら
少なくともこの話よりは短く簡単になって、>>153で話は終了になる。
それに、>>153で話が済むなら、小平解析入門にも似たような話が書かれている。
11/14(火) の ID:jtNc+3xe は私ではない。スレ主の自演だろう。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.028s