[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む46 (692レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
557
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/26(日)13:39 ID:1WQ1V5QH(6/34) AAS
(>>243より)<再録>
下記、確率論I, 確率論概論I 原隆 九州大学 より、キーワード”固定”の箇所抜粋
まあ、確かに、確率論で、キーワード”固定”を使っておりますが(^^

それ、きちんと数学的な効果を検証しながら、ステップを踏んで、使っている
貴方のように、むやみやたらと、自分勝手に、ご都合よく、”固定”を使って、「先生、証明できました!」というのは、如何なものか?(^^

それは、数学ではなく、
似非数学では?

外部リンク[pdf]:www2.math.kyushu-u.ac.jp
確率論I, 確率論概論I 原隆 九州大学
(抜粋)
P20

註2.3.2 概収束と確率収束の定義が少しわかりにくいかも知れないので,補足しておく.

概収束の場合,確率空間の元ω を一つ固定し,この固定したω 毎に極限lim n→∞ Xn(ω) を考えて,
これがX(ω) に等しいか否かを問題にしている(等しくない確率がゼロ,つまり,等しくないようなω が無視できるほど少ないなら良い).

一方,確率収束の場合は,各n 毎に|Xn(ω)?X(ω)| > ε である確率を問題にしている.
つまり, |Xn(ω) − X(ω)| > ε となるようなω は, n 毎に異なっても,とにかくその確率がゼロに行けば良い.
(引用終り)
558
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/26(日)13:54 ID:1WQ1V5QH(7/34) AAS
>>557 補足

(>>501より)<再録>

  1)[HT08b]中で
 「これをμ戦略が確率1で正しいと解釈することには注意が必要です。
  固定されたfixed true シナリオの場合、区間[0,1](またはRにおいて、適切な確率分布の下で)において瞬間tをランダムに選択すると、
  推論3.4は、μ戦略がtで確率1で正しいことを教えてくれる。
  しかし、瞬間tを固定してランダムにfixed true シナリオを選択すると、そのシナリオの下でμ戦略が正しい確率は0であるか、または存在しないかもしれません
  ランダムなシナリオの概念をどのように定義するかによって異なります。」と注意を入れていて(>>485
  自分勝手に、”固定!”を使用すると、確率1から0まで、なんでも言えてしまうこと

(引用終り)

つづく
592
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/26(日)22:28 ID:1WQ1V5QH(28/34) AAS
>>589
>スレ主は「固定」の意味が分かっていないようだがスレ主自身も実は「固定」を使っているんだよね
>スレ主は(6面)サイコロの目を当てる確率は1/6と度々書いているが
>出題者と解答者の間でサイコロの目の共通認識がある場合しか1/6ではない
>サイコロの目をたとえば{1, 2, 3, 4, 5, 6}に「固定」すればサイコロの目を当てる確率は1/6

そこ多分、理解が間違っているよ!(^^
「(6面)サイコロの目を当てる確率は1/6」は、実質定義だ!(下記、原隆先生ご参照)
下記、「正12面体サイコロ」なら、”12の面のどれも同じ確率で出る”とした定義から導かれる事項だ!
(確率論を嫁)

>>557より)
外部リンク[pdf]:www2.math.kyushu-u.ac.jp
確率論I, 確率論概論I 原隆 九州大学
(抜粋)
P3
定義1.2.1 (確率の公理,有限バージョン)

標本空間Ω とその上の確率測度P をあわせて確率空間と言い,(Ω, P) と書く.

要するに,上の性質を満たしているP なら何でも確率と認めてしまおう,と言うノリである.勿論,実際にどの
ようなP を採用するか(どのようにpj を与えるべきか)は考えている具体的問題による.(サイコロの問題でも,
イカサマサイコロなら6つの面に同じ確率を割り振るのは良くないよね.)

P5
問2: 正12面体で出来たサイコロを転がす実験を考える(12の面のどれも同じ確率で出る
と思って良い).12 の面に1〜12 の数字で互いに異なる番号を振り,これを転がす.転がした
結果出た面(一番上になっている面)の数字をZ としよう.次の問に答えよ.
1. 確率変数Z のとりうる値と,その値をとる確率を求めよ.また,Z の分布関数を求めよ.

つづく
654
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/29(水)23:46 ID:W+cOgPo0(3/6) AAS
>>650-652
落ちこぼれ素人衆、二人かな?(^^

時枝が、記事の後半で語っているところ(>>22より)
”確率の中心的対象は,独立な確率変数の無限族
X1,X2,X3,…である.”

これが、まさに、確率過程の話だよ(下記、原隆先生の抜粋ご参照。)
(そんなことも知らずに時枝を読むから、”ふしぎな戦略”(>>22)と、時枝先生が書いた数学的な意味を、あなた方は解することができないのだよ(^^ )

>>557より)
外部リンク[pdf]:www2.math.kyushu-u.ac.jp
確率論I, 確率論概論I 原隆 九州大学
(抜粋)
P69
4 ブラウン運動

4.1 確率過程としてのランダムウォークとそのpaths

4.1.1 ランダムウォークの復習

確率1/2 で±1 の値をとる,
独立・同分布の確率変数X1,X2, . . . を用いる
と,n 歩めでの粒子の位置Sn を
Sn = X1 + X2 + . . . + Xn (4.1.1)
表すこともできた.
(引用終り)
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.034s