[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む46 (692レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
556
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/26(日)13:28 ID:1WQ1V5QH(5/34) AAS
>>555 つづき

P34
(抜粋)
前節までの結果から自然にわき上がる最初の問題といえば次のようなものになる。
どのような定数c に対して、任意のα に対する不等式

|α−p/q|< c/q^2 (33)

が無限に整数解p; q(q > 0)を持つだろうか。前節の最後の結果によると次の定理を得る。

定理21. 任意のα に対して、c >= (1/√5) のとき不等式(33) は無限に多くの整数解
p, q(q > 0)を持つ。しかしながらもしc < (1/√5) であれば、適当なα に対しては
(33) は有限個の解しか持たない。

P35
(抜粋)
これによれば、与えられたa0, a1, ・ ・ ・ , ak に
対して、それに続くak+1 がより大きければ大きいほど、pk=qk はα をより近く近似
するということが明らかである。そして近似子はいかなる場合であっても最良近似な
のだから、大きな数を要素として含むような無理数ほど有理分数でよく近似できると
いう結論を得る。この量に関する注意は不等式(34) によって定量的に表わされてい
る。特に有界な要素を持つ無理数は最悪にしか近似できない。従って、今まで固定し
た程度よりも高い近似を持たない無理数を例示しようとしたときに、数
(√5 + 1)/2= [1; 1, 1, ・ ・ ・]
を何故何度も繰り返して持ち出したかということが明快になった。すべての無理数の
中で、この数は明らかに可能な中で最も小さな要素しか持っていない。(a0 は除く。
これは何の役割も果たさないから。)だから有理数で最も近似されない数だったので
ある。
有界な要素しか持っていない数に特有の近似性は次の命題で完全に言い表される。
そしてこれは、すでに述べたように、ほとんど明らかなことである。

定理23. 有界な要素を持つ任意の無理数α と十分に小さなc に対して、不等式

|α−p/q|< c/q^2

は整数解p, q(q > 0)を持たない。他方で、非有界な要素の列を持つ数α に対して
は、任意のc > 0 に対して(33) は無限にそのような解を持つ。
言い換えれば有界な要素を持つ無理数は決して1/q^2 よりも高い近似を持たないが、
非有界な要素を持つ無理数はより高階の近似を持つ。
(引用終り)

以上
576
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/26(日)18:48 ID:1WQ1V5QH(18/34) AAS
>>575 つづき

これと、
外部リンク[pdf]:argent.shinshu-u.ac.jp
A. Ya. ヒンチン(Khinchin)著 連分数 (訳:乙部厳己)1961
P58
定理29. (0, 1) の中の有界な要素をもつ数の全体は測度0 である。
(引用終り)

とが整合しないので、いろいろ調べていたんだ(>>556とか)(^^
ようやく分ったのは、
Dν≠{x |(a) For every irrational number x with bounded elements in its continued fraction expansion, fν is differentiable at x.}
じゃないんだ!(^^

VARONA氏のP5 Lemma 3 g(t)について示しているように、”for almost all x”がDνなんだ。
つまり、”Dν={x | for almost all x at Lemma 3 }”みたい(^^

上記の”(b) There exist infinitely many irrational numbers x such that fν is not differentiable at x.”は、こんなのもあると、一例を示したと
1週間近く悩んでいたんだ(^^

以上
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.036s