[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む46 (692レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
505(3): 2017/11/23(木)10:03 ID:jgGp1UXf(1/5) AAS
>>501-503
言いたい放題の馬鹿モノめ
> For a fixed true scenario, if one randomly selects an instant t in the interval [0,1] (or in R, under a suitable probability distribution),
> then Corollary 3.4 does tell us that the μ-strategy will be correct at t with probability 1.
> However, if one fixes the instant t, and randomly selects a true scenario, then the probability that the μ-strategy is correct at t under
> that scenario might be 0 or might not even exist, depending on how one defines the notion of a random scenario.
これは昔からさんざん言ってきたことで、お前と"ぷ"だけが分かってないことだろうが。
156 自分:132人目の素数さん[sage] 投稿日:2017/08/19(土) 22:46:59.17
>(1)FixされたR^Nに対して99/100が成り立つ からと言って
>(2)確率的に選ばれるR^Nに対して99/100が成り立つ は言えない
(1') サイコロの確率だけで99/100が言える問題設定=時枝記事の前半部分=上記(1)の設定
(2') 非可測性が問題になるR^N X 100 を確率標本に取った問題設定=上記(2)の設定
時枝記事を理解できるかは、この2つを区別できるかどうかにかかっていると言ってよい。
記事の前半を正しく(1')の設定で読んだとしたら確率99/100は論理で理解できる。
ただし記事の後半は個々の箱のr_i∈Rの独立性を議論している。
(1')の設定では各r_iは固定されており、そもそも確率事象ではなく独立性は関係ない。
よって記事の後半は(2')の設定を頭に浮かべながら読むのがいいだろう。
非可測性の観点から記事前半の戦略を否定する人は設定を取り違えて(2')と解釈している。
あるいは相手の考えている設定にはお構いなく(2')の設定で議論する。このため話がすれ違う。
とはいえ、記事の後半を読むと(2')に誘導させられる気持ちも分かる。
取り違えの誘発は時枝氏の意図である可能性もある。
・(1')と(2')の違いが分からない
・決定番号は∞
・サイコロで箱の数を決めれば現代確率論に反するので当てられない
・カントールは間違っている
こういう手合いは第三の勢力で、あまりマトモなものではない。
67(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)09:21 ID:cTg/FCp5(65/94) AAS
「ぷふ」さん、こちらに移しておくよ
スレ43は、おれは使わないんだ(^^
2chスレ:math
現代数学の系譜 工学物理雑談 古典ガロア理論も読む43
18 名前:132人目の素数さん[] 投稿日:2017/11/12(日) 08:25:20.13 ID:GGaVEi9w
ここでいいかな?
現代数学の系譜 工学物理雑談 古典ガロア理論も読む45
2chスレ:math
>どこらへんがむしろなんだよw
>おまえはいつも なんとなく で数学を語る。
>頭悪いのに分かった風に語るタイプ。
>スレ主と同類。
分からないんですね?
ホントに確率事象についての認識ができてませんよ
>『確立事象』と『確率自称』とか、どう気をつければそんな間違いを起こせるのかもよくわからん。
>確率事象を分かってないのはオマエだろ!と突っ込みたくなる気持ちを分かれw
ぷ
>>>505
>> 無限帽子は何を確立事象と見るかよく考えないと騙されちゃうよ
>
>>>832
>> 確率自称が分かってない
>
>しまいには勝手に元問題を改変して
>『これが正しい問題設定』 『この問題設定では当てられません』
>とドヤ顔で主張してくる。
>この点もスレ主と同類。
改変ではなく君たちの認識が誤っていることを指摘しただけ
fを選ぶ(関数空間の中から)
x0を選ぶ(選び方はどうでもいいよ)
x≠x0以外のf(x)を開示(この時点でf(x0)のみが確率変数)
g(x0)がどのような値であったとしてもf(x0)=g(x0)となる確率は0なのだな
ここで重要なのは{x|f(x)=g(x),x≠x0}と{x|f(x)≠g(x),x≠x0}が有限であろうが無限であろうが
f(x0)=g(x0)かどうかとは全く関係しないってこと
単に{x|f(x)=g(x),x≠x0}と{x|f(x)≠g(x),x≠x0}が定まるというだけ
x≠x0以外のf(x)を開示した時点で他のf(x)は確率変数でなくなることに気付いていない人が大部分みたいで
気付いていて煙に巻いている人にダマサれてることに気付いてないw
>まずは>>822 >>824を読め。
>じっくり考えて完璧な回答を寄越せ。
何が確立事象確率変数であるか君こそよく考えた方がいいよ
260(2): 2017/11/18(土)14:13 ID:LAjmabkB(3/5) AAS
自分に見えない数字はみな確率変数であるというのが ぷ君 の持論である
ちなみにぷ君は前スレで
>>>505
>> 無限帽子は何を確立事象と見るかよく考えないと騙されちゃうよ
>
>>>832
>> 確率自称が分かってない
と確立もとい確率事象の見分けに自信がお有りのようだったw
にも関わらず>>95はぷ君には意味が分からないらしい
もっと簡単で誰にでもわかる問題を出そう
スレ主も答えていいぞ笑
ぷ君を援護してやれ
---
目の前に封筒があり、中には6以下の自然数xが書かれたカードが入っている
ぷ君に封筒の中身は見えない
--
さて、ぷ君に質問だ
問1
この自然数xは確率変数か?
確率変数であるというなら証明せよ。
すなわち、xがどのような標本空間と測度で選ばれるのかを一切の仮定なしに示せ
(示せるものなら笑)
問2
ぷ君は箱の中身xが1であると睨んだ
ぷ君お得意のx=1戦略である
この予想が正しい確率を一切の仮定なしに求めよ
(求められるものなら笑)
問3
ぷ君はサイコロを振ることにした
出目と封筒の中身が一致する確率を求めよ
512: 2017/11/23(木)12:32 ID:jgGp1UXf(5/5) AAS
>>501-503
> For a fixed true scenario, if one randomly selects an instant t in the interval [0,1] (or in R, under a suitable probability distribution),
> then Corollary 3.4 does tell us that the μ-strategy will be correct at t with probability 1.
> However, if one fixes the instant t, and randomly selects a true scenario, then the probability that the μ-strategy is correct at t under
> that scenario might be 0 or might not even exist, depending on how one defines the notion of a random scenario.
この文章を読めば分かるように、何が確率変数で何が固定されているのかを把握することが肝である
そんなことはずっと前(>>505)から伝えているにもかかわらず、
スレ主は「固定は未定義」などとアホな難癖をつけてゴネていたのであるw
お前は「fix」は理解したのか?
未だ理解せずに>>501-503を引用しているのか?
お前が引用した>>501-503にはfixが何度も使われているぞ?w
「fix」を理解していないなら 理 解 し て い な い と言え。
理解したなら未定義と難癖をつけたことを詫びなさいよ大馬鹿者
-----
94 名前:現代数学の系譜 古典ガロア理論を読む[sage] 投稿日:2017/08/19(土) 13:32:29.25 ID:du7mecbW [13/34]
”集合 R^N からその元 s を一つ取り出すことを「s∈R^N を fix する」や「s∈R^N を固定する」などと言う”(下記前スレより)
1.∀s∈R^N or ∃s∈R^N どちらか? ということだね(^^
2.”(1)FixされたR^Nに対して99/100が成り立つ からと言って (2)確率的に選ばれるR^Nに対して99/100が成り立つ は言えない、ということ。”(下記過去スレより)を説明する定義になっているのかな?
3.上記2の補足:”固定”とか”Fix”で、非可測集合が可測集合に変化すると言っているように見えるけど? どういうことなのかな? 無条件でそれが言えるなら、新説だろうね(^^
4.”結局のところ、固定されたいかなるsでもν(s)≧99/100と言える”(下記過去スレより)って、”固定”の定義なしで数学の証明したんだね?(^^
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.029s