[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む46 (692レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
49(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)09:04 ID:cTg/FCp5(49/94) AAS
>>48 つづき
スレ45 2chスレ:math
473 自分返信:現代数学の系譜 工学物理雑談 古典ガロア理論も読む[sage] 投稿日:2017/11/06(月) 00:08:48.04 ID:1Au30FRy [7/13]
先に私の見解を書いておくが、ピエロくんの紹介してくれた >>312 PDF が参考になるね(^^
The Mathematics of Coordinated Inference: A Study of Generalized Hat Problems (Developments in Mathematics) 2013 edition by Hardin, Christopher S., Taylor, Alan D.
これで、上記とちょっと違って、7章”The Topological Setting”とかなっていて、さすがに上記は、まずいということらしい。(^^
例えば、
P9
”In Chapter 7 we start to move further away from the hat problem
metaphor and think instead of trying to predict a function's value at a
point based on knowing (something about) its values on nearby points. The
most natural setting for this is a topological space and if we wanted to
only consider continuous colorings, then the limit operator would serve as
a unique optimal predictor. But we want to consider arbitrary colorings.
Thus we have each point in a topological space representing an agent and
if f and g are two colorings, then f ≡a g if f and g agree on some deleted
neighborhood of the point a. It turns out that an optimal predictor in this
case is wrong only on a set that is "scattered" (a concept with origins going
back to Cantor). Moreover, this predictor again turns out to be essentially
unique, and this is the main result in Chapter 8.”
などとある
さすれば、時枝もそのままじゃ(Topologicalな条件を加えないと)、成り立たないと思うがどう?(^^
以上
50(5): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)09:05 ID:cTg/FCp5(50/94) AAS
>>49 関連
スレ45 2chスレ:math
540 返信:現代数学の系譜 工学物理雑談 古典ガロア理論も読む[sage] 投稿日:2017/11/07(火) 14:31:03.11 ID:/DwZQaZ/ [1/5]
>>537 追加
追加でしっかり書いておくよ〜(^^
<言いたいことは、結論を言えば、XOR’S HAMMERも、Sergiu Hart氏・時枝も、全部パズルなんだよね>
1.名前を付けよう
1)下記、XOR’S HAMMERのYou and Bobのpuzzleを、任意関数の数当て解法としよう。
記 (>>471より)
外部リンク:xorshammer.com
SET THEORY AND WEATHER PREDICTION XOR’S HAMMER Some things in mathematical logic that I find interesting WRITTEN BY MKOCONNOR Blog at WordPress.com. AUGUST 23, 2008
(抜粋)
Here’s a puzzle:
You and Bob are going to play a game which has the following steps.
2)Sergiu Hart氏のpuzzle及び時枝記事(>>17-24より)の解法を、加算無限個数列の数当て解法としよう
Sergiu Hart氏のPDF 外部リンク[pdf]:www.ma.huji.ac.il (>>46より)
つづく
363: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/19(日)12:42 ID:W1ZiI7BV(13/34) AAS
>>362 つづき
囚人と帽子 ”Prisoners and hats puzzle”についても、1年前にやっているから
こちらは、びっくりも、しゃっくりもしないんだよ(^^
スレ22 2chスレ:math
(抜粋)
129 返信:現代数学の系譜11 ガロア理論を読む[] 投稿日:2016/08/20(土) 14:08:49.79 ID:o5QeTUwB [23/41]
>>128
つづき
2chスレ:math
52 名前:現代数学の系譜11 ガロア理論を読む[] 投稿日:2016/01/16(土) 18:45:43.64 ID:Y3KfUb
>>49
どうも。スレ主です。
コメントありがとう
要は、時枝問題は、無限集合を使ったゲームのトリックというエールを貰ったのかな?(^^;
ともかく、Terence Taoがコメントしている話は、どこかで読んだかも知れない
100人の囚人が、自分の帽子の色を言い当てると、釈放されるが、その上手い方法や如何にと・・・
日本語の記事が、検索でヒットするかも
えーと ”100人の囚人 自分の帽子の色 放”で下記ヒットか
外部リンク:detail.chiebukuro.yahoo.co.jp
name_1717さん 2011/10/613:12:57 yahoo.
数学の質問です
論理的に答えてください
100人の囚人が一列にならんでいます
Prisoners and hats puzzleと呼ばれる有名問題のようですね。
外部リンク:en.wikipedia.org
(引用終り)
以上
503(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/23(木)09:28 ID:A258vGqh(3/13) AAS
<独り言>
1.”>>479-485を、切り札にする”と言っても、言うほど簡単じゃない。
分量的にも大変だ。中途半端だと、議論の錯綜に輪を掛けることになる。
だから、PDFを3つ読み込まないといけなかった。
>>481の”However, if one fixes the instant t, and randomly selects a true scenario, ・・・ at t under that scenario might be 0 or might not even exist, depending on how one defines the notion of a random scenario.”
には、早く気付いていたが、
他のPDFとの関連も確認する必要があった。
2.(文系) High level people たちの<数学ディベート>(もどき?)(>>8)は、全く面白くないんだよね。
自分達が、関連論文を読んで、紹介しようとしないから、話のレベルが全く上がらない。
3.その点、ピエロは、関連論文の検索能力はある。
例えば>>49のTaylor氏達のPDFとか、あるいは知っていたが重視していなかった”XOR’S HAMMERの任意関数の数当て解法”(>>56)を発掘したりとかは、大いに評価できる。
(一方、サイコパス性格なので、(自分のウソを信じるから)自分に甘く、厳格な数理論理の貫徹ができない。また、細かい点で間違いが多い。)
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.046s