[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む46 (692レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
47
(6): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)09:02 ID:cTg/FCp5(47/94) AAS
>>46 つづき
45 2chスレ:math
471 現代数学の系譜 工学物理雑談 古典ガロア理論も読む 20171106

で、むしろ時枝記事に近いのは、君が>>295>>304)で紹介した下記の方が、時枝に近いだろう
ここでは、任意の関数f(x)の任意の貴方の選ぶ1点(”You pick an x ∈ R”)を、” whatever f Bob picked, you will win the game with probability 1!”、”it’s arbitrary: it doesn’t have to be continuous or anything”の条件で当てられるとあるよ

N⊂Rだから、”You pick an n ∈ N”とすれば、時枝記事の場合を含むことになろう
で、時枝記事のように、どこの箱が当たるか分らず、また確率99/100に対して、これは自分で選んだxであり、”with probability 1!”だから、こちらの解法がよほど優れている

外部リンク:xorshammer.com
SET THEORY AND WEATHER PREDICTION XOR’S HAMMER Some things in mathematical logic that I find interesting WRITTEN BY MKOCONNOR Blog at WordPress.com. AUGUST 23, 2008
(抜粋)
Here’s a puzzle:
You and Bob are going to play a game which has the following steps.

1)Bob thinks of some function f: R → R (it’s arbitrary: it doesn’t have to be continuous or anything).
2)You pick an x ∈ R.
3)Bob reveals to you the table of values {(x0, f(x0))| x0 ≠ x } of his function on every input except the one you specified
4)You guess the value f(x) of Bob’s secret function on the number x that you picked in step 2.

You win if you guess right, you lose if you guess wrong. What’s the best strategy you have?
This initially seems completely hopeless: the values of f on inputs x0 ≠ x have nothing to do with the value of f on input x, so how could you do any better then just making a wild guess?
In fact, it turns out that if you, say, choose x in Step 2 with uniform probability from [ 0,1 ], the axiom of choice implies that you have a strategy such that, whatever f Bob picked, you will win the game with probability 1!
つづく
48
(6): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)09:02 ID:cTg/FCp5(48/94) AAS
>>47 つづき

スレ45 2chスレ:math
472 自分返信:現代数学の系譜 工学物理雑談 古典ガロア理論も読む[sage] 投稿日:2017/11/06(月) 00:05:26.40 ID:1Au30FRy [6/13]

The strategy is as follows: Let 〜 be the equivalence relation on functions from R to R defined by f 〜 g iff for all but finitely many y, f(y) = g(y). Using the axiom of choice, pick a representative from each equivalence class.

In Step 2, choose x with uniform probability from [ 0,1 ].
When, in step 3, Bob reveals {(x0, f(x0)) | x0 ≠ x }, you know what equivalence class f is in, because you know its values at all but one point. Let g be the representative of that equivalence class that you picked ahead of time. Now, in step 4, guess that f(x) is equal to g(x).

What is the probability of success of this strategy?
Well, whatever f that Bob picks, the representative g of its equivalence class will differ from it in only finitely many places.
You will win the game if, in Step 2, you pick any number besides one of those finitely many numbers.
Thus, you win with probability 1 no matter what function Bob selects.
(引用終り)

つづく
250
(24): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)10:59 ID:EemFP5PJ(5/34) AAS
>>247-248
これはこれは、粘着 High level peopleさん、いつも粘着ご苦労さまです(^^
「非論理的な落ちこぼれ素人衆が相手で、話がなかなか終わらない」が、正解じゃないですか〜(>>246)(^^

爆笑暴論珍説「素人固定論」か
一つずついきましょうか

1.(>>47より)外部リンク:xorshammer.com
 SET THEORY AND WEATHER PREDICTION XOR’S HAMMER Some things in mathematical logic that I find interesting WRITTEN BY MKOCONNOR Blog at WordPress.com. AUGUST 23, 2008
 (抜粋)
 Here’s a puzzle:
 1)Bob thinks of some function f: R → R (it’s arbitrary: it doesn’t have to be continuous or anything).
 2)You pick an x ∈ R.
 (引用終り)
 だった

2.ところが、(>>48より)In Step 2, choose x with uniform probability from [ 0,1 ]. となって、”uniform probability”なる条件が、さりげなく入ってきた

3.”uniform probability”なる条件が、このパズルのキーワードの一つだ!

4.”uniform probability”をどう解釈するか? 一つの解釈として、過去スレで、下記を書いた。
 要は、x0を1回のみ試行するなら、”uniform probability”ではない!
 だから、[ 0,1 ]を全部”均等”に実施するのだ!と(もし、別の解釈が可能なら仰ってください)

つづく
351
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/19(日)10:02 ID:W1ZiI7BV(8/34) AAS
>>342
ウソつきサイコパスのピエロ、ご苦労!(^^
昨日は、沢山作文書いたね。小学生なのにえらいね。今日も頑張れよ!(^^

>f(x)のxをtとしてf(t)が確率過程だと?笑わせるなw

別にそんなことを言っているのではないよ〜(^^
えーと、整理すると

1)(>>267より)High level people
「「[ 0,1 ]の0から初めて1に達するまで」
とかいう実数の順序に従った試行条件は必要ない
(そもそも実行不可能だが)」 だった。

2)(>>273で)私
「>(そもそも実行不可能だが)
可能だ。x_tとして、添え字tを、0→1に変化させるべし!(^^」 と言った

3)(>>278)それに対してピエロが
「"連続的試行"なんて確率論では正当化できませんよ」だったから

4)(>>318)私
「"連続的試行"が、確率論で正当化されている」例として、”確率過程がありますよ”
と、例示しただけのこと

5)<結論>
「"連続的試行"は、確率論で正当化されている」!!
別に、f(t)が確率過程だと言っているわけではない

しかし、f(t)として、区間[0,1]のウィーナー過程の Wt、あるいは、X_{t}=μt+σW_{t}(下記)を採用することも可だろう
>>47より)”1)Bob thinks of some function f: R → R (it’s arbitrary: it doesn’t have to be continuous or anything).”なのだから(^^

外部リンク:ja.wikipedia.org
ウィーナー過程
(抜粋)
特徴づけ
ウィーナー過程 Wt は次の三つの条件 ・・によって特徴付けられる。

一次元ウィーナー過程

関連のある確率過程
以下のように定義される確率過程
X_{t}=μt+σW_{t}
はドリフト項 μ と無限小分散 σ2 を持つウィーナー過程と呼ばれる。

(引用終り)
365
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/19(日)12:59 ID:W1ZiI7BV(14/34) AAS
>>343
>残念だが、全てのxでf(x)は決まってるし、全てのiで、d(s_i)も決まってる
>不特定多数の人が、それぞれ勝手なx、勝手なiを選ぶのであって
>その中で当たっている人の確率を求めるとそれぞれ1、99/100となる

ピエロ、横レスすまんな(^^
えーと、時枝の前に、まず、>>47の”XOR’S HAMMERの任意関数の数当て解法”をやろう!(>>56に同じ)

1.全てのxでf(x)は決まってるし、代表g(x)も決まってる。一つx0を選んだ段階で、x0以外の全てのf(x)は開示される
 (”3)Bob reveals to you the table of values {(x0, f(x0))| x0 ≠ x } of his function on every input except the one you specified”(>>47より))
2.開示されたx0以外の全てのf(x)の情報により、代表g(x)が選ばれる。f(x)〜g(x)(=同値)だから、f(x)とg(x)とは、有限個しか値が異ならない
3.(>>48より)”choose x with uniform probability from [ 0,1 ].”という条件を付与することで、当たる確率1となる

タネを明かせば、単純なパズルにすぎない(^^
まあ、小学生のピエロには理解が難しいかな?
389
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/19(日)16:33 ID:W1ZiI7BV(26/34) AAS
>>384-386

論破されて発狂の図か?(^^

>>387

>お前は1回の試行ではuniform probabilityとは言えないと言ったのである

おまえ、そこで嵌まってんだよ(^^
そに気付よ

おの言った意図は、>>331に書いてあるよ
問題は、(>>47) XOR’S HAMMER のパズルの数学トリックを、どう理解するかだ

”1回の試行で uniform probability”と考えて
そこで思考停止すると、ハマリ!(^^
391: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/19(日)16:41 ID:W1ZiI7BV(28/34) AAS
>> 389 補足

>”1回の試行で uniform probability”と考えて
>そこで思考停止すると、ハマリ!(^^

すでに書いたが、普通の確率論で、一様分布の平均、分散、大数の法則
全て、繰り返し行うことを前提とした話だよ(^^

1回の試行で、思考停止すると、ハマリ!(^^
だから、一度、”1回の試行で uniform probability”を外さないと、(>>47) XOR’S HAMMER のパズルの数学トリックは解けないってことさ(^^

>>387 嫁!
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.044s