[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む46 (692レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
430
(3): 2017/11/21(火)04:23 ID:cl7UYlaS(2/20) AAS
正整数nと、超越数 a∈I=(0,1) とを任意に取る。
任意の既約な有理数 x=p/q∈(0,1) に対して f(p/q)=p/q、 任意の無理数 x∈(0,1) に対して f(x)=a
というようにして区間 I=(0,1) で定義された実関数 f(x) を考える。
J={ p/q∈I | |f(a)−f(b)|=|a−p/q)|<1/q^n, (p,q は互いに素) } とおく。
既約有理数 b=p/q∈J を任意に取ると、p/q に対して或る正整数mが存在して、
1=|( f(a)−f(b) )/(a−b)|<1/(q^n|a−p/q|)<m で、1/(m・q^n)<|a−p/q|<1/q^n となる。
また、p/q の分母qと分子pについて q>p≧1 で、Jは可算無限集合だから、
Jの既約有理数 p/q についての分母qに上限は存在しないと同時に下限が存在する。
従って、或る正整数 q≧2 が存在して、k≧q のとき、任意の k>p≧1 なる高々有限個の
既約有理数 p/k∈J に対して 1/k^{n+1}<|a−p/k|<1/k^n となる。
故に、任意の正整数nと超越数 a∈I=(0,1) とに対して、或る正整数 q≧2 が存在して、
k≧q のとき、任意の k>p≧1 なる高々有限個の既約有理数 p/k∈J に対して 1/k^{n+1}<|a−p/k|<1/k^n となる。
故に、任意の正整数nと超越数 a∈I=(0,1) とに対して、可算無限個の既約有理数 p/q∈J に対して 1/q^{n+1}<|a−p/q|<1/q^n。
431
(2): 2017/11/21(火)04:26 ID:cl7UYlaS(3/20) AAS
(>>430の続き)
逆に、任意の正整数nに対して、可算無限個の既約有理数 p/q∈I=(0,1) q>p≧1 に対して 1/q^{n+1}<|a−p/q|<1/q^n とする。
このとき、a∈I=(0,1) が実代数的数とする。aの最小多項式の次数をnとする。
|a−p/q|≦1/q^{n+1}<1/q^n なる既約有理数 p/q∈(0,1) (q>p≧1) は高々有限個存在するから、
|a−p/q|≧1/q^n なる既約有理数 p/q∈I=(0,1) (q>p≧1) は可算無限個存在する。
従って、|a−p/q|<1/q^n≦|a−p/q| なる既約有理数 p/q∈I=(0,1) (q>p≧1) が存在して矛盾する。
背理法が適用出来るから、任意の正整数nに対して、可算無限個の既約有理数 p/q∈I=(0,1) q>p≧1 に対して
1/q^{n+1}<|a−p/q|<1/q^n なる実数 a∈I=(0,1) は超越数となる。

故に J⊂I から、実数 a∈I=(0,1) について、aが超越数なるための必要十分は、任意の正整数nに対して
可算無限個の既約有理数 p/q∈I=(0,1) q>p≧1 に対して 1/q^{n+1}<|a−p/q|<1/q^n となることである。

だけどこれ、知られているよな。
433
(1): 2017/11/21(火)05:26 ID:X9h/AUBd(1/16) AAS
>>430-431
もはや反応するのもバカらしいけど、お前は一体何の話をしてるんだ。
f の話をしろよ。お前がそこで書いてることは f と何の関係もないじゃん。
何で結論が

>実数 a∈I=(0,1) について、aが超越数なるための必要十分は、任意の正整数nに対して
>可算無限個の既約有理数 p/q∈I=(0,1) q>p≧1 に対して 1/q^{n+1}<|a−p/q|<1/q^n となることである。

になってるんだよ。これでは「 実数 a 」に関する議論であって、
f の不連続性とか微分可能性とかの話になってないじゃん。
>>430にしても、一見すると f の話をしているように見えて、
実際には a の話になっていて、f の話を全くしていない。

しかも、お前が考えている f は [0,1]上のどの点でも微分不可能で、
f が連続になる点も高々1点しか存在しない。問題外。
スレ主が引っ張ってきた関数の方が遥かにマシ。

根本的には、そもそも件の f は「存在しない」のだから、これ以上考えても無駄w
530
(3): 2017/11/24(金)12:24 ID:oy9GryqM(1/3) AAS
おっちゃんです。
え〜、>>430-431には間違いがあります。正しくは次のようになる。

超越数 a∈R について、aがリウビル数であるための必要十分は、
任意の正整数nに対して、高々有限個の J(n,a) の両方共に或る (p,q)=1 なる正整数 p,q を用いて表された
有理数 p/q が 1/( q^{n+1} )<|a−p/q|<1/q^n を満たすことである。
(証明)、[第1段]:a∈I をリウビル数とする。正整数nを任意に取る。
有理数直線Qの部分空間 J(n,a) を J(n,a)={ p/q∈Q | |a−p/q|<1/q^n } と定義する。
正整数の大小関係から、(p,q)=1 なる正整数 p,q を用いて表された J(n,a) の既約分数 p/q の分母qについて、
qに上限は存在せず下限 c=inf_{ (p,q)=1, p/q∈J(n,a) }(q) が存在する。故に、J(n,a) は可算無限集合である。
両方共に或る (p,q)=1 なる正整数 p,q を用いて表された J(n,a) の既約分数 p/q を任意に取る。
すると、|a−p/q| は超越数で |a−p/q|>0 だから、J(n,a) の定義に注意すると、
p/q に対して或る正整数 m(p/q) が存在して、1/( m(p/q)・q^n )<|a−p/q|<1/q^n。従って、m(p/q)≧2。
J(n,a) の既約分数 p/q は任意であるから、既約分数 p/q を J(n,a) 上で走らせれば、
両方共に或る (p,q)=1 なる正整数 p,q を用いて表された或る有理数 p/q∈J(n,a) が存在し、
p/q に対して或る2以上の整数 m(p/q) が定まって、m=m(p/q) とおけば、
k≧m のとき、高々有限個の (p,k)=1 なる正整数 p,k を用いて表された
有理数 p/k∈J(n,a) は 1/(k・q^n)<|a−p/q|<1/q^n を満たす。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.032s