[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む46 (692レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
371
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/19(日)13:33 ID:W1ZiI7BV(16/34) AAS
>>356
High level peopleさん
どうも。スレ主です。

>“おまえ”=私ではありませんが何か?

これは失礼(^^
「(そもそも実行不可能だが)」(>>267)の発言主は、ID:ZcXWWwZM のピエロだったか(^^

だが、間違い方が似ている
ピエロのサイコパス性格を抜けば、成りすましと思えるほどだ(^^

が、再度お詫びを致しますm(_ _)m

ところで、

>そりゃあなたがuniform probabilityで0.5を選んだならuniform probabilityですよ。
 ・
 ・
>プレイヤーの戦略がuniform probabilityかどうかを第三者視点で検証しようという問題ではございませんw

って、それ無茶苦茶なロジックだよね。そうじゃなく、”uniform probability”がきちんと担保された手続きで、0.5を選んだならという前提があるはず
そこを飛ばしたら、そこが貴方の理解を超えているからと飛ばしたら、”固定!”とかなんでもできてしまう貴方の似非数学そのものだわ〜(^^

つづく
372
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/19(日)13:34 ID:W1ZiI7BV(17/34) AAS
>>371 つづき

1.数学の論の進め方に、同値な命題に置き換えるというのがある
2.下記は、同値だ
 命題A:
 ・choose x with uniform probability from [ 0,1 ] 
  ↓
 ・f(x) と g(x) と比較し、f(x) = g(x) ならh(x)=1, f(x) ≠ g(x) ならh(x)=0, なる関数h(x)を定める
  ↓
 ・関数h(x)を区間[0,1]まで積分する。外れが有限で零集合だから、積分値は1。つまり、的中率1

 命題B:
 ・choose x with uniform probability from [ 0,1 ] より
  ↓
 ・x=0からゲームを始め、f(x) と g(x) と比較し、f(x) = g(x) ならh(x)=1, f(x) ≠ g(x) ならh(x)=0, なる関数値h(x)を、x=1まで記録してゆく
  ↓
 ・関数値h(x)がすべて決まる。外れが有限で零集合だから、的中率1

3.命題Aと命題Bとの同値であることは、ほぼ自明。(∵命題Bは、命題Aを単に”ゲーム”という言葉で置き換えたに過ぎない)
4.命題Aと命題Bとが同値である以上、私スレ主の主張”XOR’S HAMMERの関数数当てパズルの種明かし”(>>233&>>245>>365)になんの問題もない

以上
378
(1): 2017/11/19(日)15:17 ID:xbpj1BvL(17/26) AAS
>>371
> >プレイヤーの戦略がuniform probabilityかどうかを第三者視点で検証しようという問題ではございませんw
>
> って、それ無茶苦茶なロジックだよね。そうじゃなく、”uniform probability”がきちんと担保された手続きで、0.5を選んだならという前提があるはず

uniform probabilityの担保?手続き?
馬鹿じゃねーの。
386
(1): 2017/11/19(日)16:10 ID:xbpj1BvL(22/26) AAS
uniform probabilityと言ったらuniform probabilityである

それをどのように実現するかを問題にしているのではない
uniform probabilityの担保?手続き?
意味不明
馬鹿じゃねえの?

>>378
> >>371
> > >プレイヤーの戦略がuniform probabilityかどうかを第三者視点で検証しようという問題ではございませんw
> >
> > って、それ無茶苦茶なロジックだよね。そうじゃなく、”uniform probability”がきちんと担保された手続きで、0.5を選んだならという前提があるはず
>
> uniform probabilityの担保?手続き?
> 馬鹿じゃねーの。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.031s