[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む46 (692レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
273(6): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)15:25 ID:EemFP5PJ(14/34) AAS
>>267
>とかいう実数の順序に従った試行条件は必要ない
必要ないが、順序を乱す必然性もない
>(そもそも実行不可能だが)
可能だ。x_tとして、添え字tを、0→1に変化させるべし!(^^
>選び方の指定として”uniform probability”と述べている
だから、それを数学的に表現したらどうなるんだ(どういう定義だ)と、聞いているのだよ!(^^
その定義と、「[ 0,1 ]の0から初めて1に達するまで」(積分(ここの議論は過去スレにあるが))とは等価だろ?
276(1): 2017/11/18(土)15:35 ID:SxRpMzIL(7/12) AAS
>>273
>可能だ。
じゃあ最初に0を選んで、その次に選ぶ実数の値を答えて下さい
277: 2017/11/18(土)15:40 ID:SxRpMzIL(8/12) AAS
>>273
>だから、それを数学的に表現したらどうなるんだ(どういう定義だ)と、聞いているのだよ!(^^
uniform probability が数学的に定義されていないとでも?
278(5): 2017/11/18(土)16:10 ID:ZcXWWwZM(9/23) AAS
>>267 ID:ZcXWWwZM
>(そもそも(実数の順序に従った試行は)実行不可能だが)
>>273 ID:EemFP5PJ
>可能だ。x_tとして、添え字tを、0→1に変化させるべし!(^^
>>276 ID:SxRpMzIL
>じゃあ最初に0を選んで、その次に選ぶ実数の値を答えて下さい
そりゃそう突っ込むよなw
実数の順序は全順序だけど整列順序じゃないから
自然数みたいに0の次は1、とはいかない
"連続的試行"なんて確率論では正当化できませんよ
実数集合上の測度は"連続的試行"の正当化ではありません
279(3): 2017/11/18(土)16:14 ID:ZcXWWwZM(10/23) AAS
>>273
>だから、それ(uniform probability)を数学的に表現したらどうなるんだ
>(どういう定義だ)と、聞いているのだよ!(^^
ここに書いてあるけどw
外部リンク:ja.wikipedia.org
[0,1]の場合、密度関数は[0,1]での定数関数1ね([0,1]以外では0)
ほんと語れば語るほど基本的な知識が欠如してるのがバレてくね
工学部の確率論って一体何教えてんの?
284(5): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)17:48 ID:EemFP5PJ(18/34) AAS
>>279
いや、聞いていることは、
1)”choose x in Step 2 with uniform probability from [ 0,1 ]”を、貴方はどうやってそれを実行するのか?
2)実行された、試行が、実際に”choose x in Step 2 with uniform probability from [ 0,1 ]”であることをどうやって検証(立証)するのか
この2点から、その引用した定義を、現実の問題(>>273)にどう当てはめるのか?
まあ、これは応用問題ですよ。定義を、検索して引用するだけなら、だれでもできる
だが、それを、現実の問題に当てはめるには
応用力を必要とするってことですよ〜(^^
351(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/19(日)10:02 ID:W1ZiI7BV(8/34) AAS
>>342
ウソつきサイコパスのピエロ、ご苦労!(^^
昨日は、沢山作文書いたね。小学生なのにえらいね。今日も頑張れよ!(^^
>f(x)のxをtとしてf(t)が確率過程だと?笑わせるなw
別にそんなことを言っているのではないよ〜(^^
えーと、整理すると
1)(>>267より)High level people
「「[ 0,1 ]の0から初めて1に達するまで」
とかいう実数の順序に従った試行条件は必要ない
(そもそも実行不可能だが)」 だった。
2)(>>273で)私
「>(そもそも実行不可能だが)
可能だ。x_tとして、添え字tを、0→1に変化させるべし!(^^」 と言った
3)(>>278)それに対してピエロが
「"連続的試行"なんて確率論では正当化できませんよ」だったから
4)(>>318)私
「"連続的試行"が、確率論で正当化されている」例として、”確率過程がありますよ”
と、例示しただけのこと
5)<結論>
「"連続的試行"は、確率論で正当化されている」!!
別に、f(t)が確率過程だと言っているわけではない
しかし、f(t)として、区間[0,1]のウィーナー過程の Wt、あるいは、X_{t}=μt+σW_{t}(下記)を採用することも可だろう
(>>47より)”1)Bob thinks of some function f: R → R (it’s arbitrary: it doesn’t have to be continuous or anything).”なのだから(^^
外部リンク:ja.wikipedia.org
ウィーナー過程
(抜粋)
特徴づけ
ウィーナー過程 Wt は次の三つの条件 ・・によって特徴付けられる。
一次元ウィーナー過程
関連のある確率過程
以下のように定義される確率過程
X_{t}=μt+σW_{t}
はドリフト項 μ と無限小分散 σ2 を持つウィーナー過程と呼ばれる。
(引用終り)
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.032s