[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む46 (692レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
250(24): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)10:59 ID:EemFP5PJ(5/34) AAS
>>247-248
これはこれは、粘着 High level peopleさん、いつも粘着ご苦労さまです(^^
「非論理的な落ちこぼれ素人衆が相手で、話がなかなか終わらない」が、正解じゃないですか〜(>>246)(^^
爆笑暴論珍説「素人固定論」か
一つずついきましょうか
1.(>>47より)外部リンク:xorshammer.com
SET THEORY AND WEATHER PREDICTION XOR’S HAMMER Some things in mathematical logic that I find interesting WRITTEN BY MKOCONNOR Blog at WordPress.com. AUGUST 23, 2008
(抜粋)
Here’s a puzzle:
1)Bob thinks of some function f: R → R (it’s arbitrary: it doesn’t have to be continuous or anything).
2)You pick an x ∈ R.
(引用終り)
だった
2.ところが、(>>48より)In Step 2, choose x with uniform probability from [ 0,1 ]. となって、”uniform probability”なる条件が、さりげなく入ってきた
3.”uniform probability”なる条件が、このパズルのキーワードの一つだ!
4.”uniform probability”をどう解釈するか? 一つの解釈として、過去スレで、下記を書いた。
要は、x0を1回のみ試行するなら、”uniform probability”ではない!
だから、[ 0,1 ]を全部”均等”に実施するのだ!と(もし、別の解釈が可能なら仰ってください)
つづく
251(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)11:00 ID:EemFP5PJ(6/34) AAS
>>250 つづき
<引用>
スレ45 2chスレ:math
(抜粋)
”choose x in Step 2 with uniform probability from [ 0,1 ]”だから、 Gameを、[ 0,1 ]の0から初めて1に達するまで、続ける
x=0のときに、Bobのf(x)が分って、同値類が分って、代表f'(x)が決まる。あとを続ければ、Δf = f(x)−f'(x) は、”定義の通り” [ 0,1 ]では有限個しか不一致がないんだ
それだけのこと。つまり、x=0のときに、代表f'(x)が決まるから、あとはどこで有限個が外れるか、その時点で全て分るわけさ!! (^^
これだと、関数の数当てとしては、完全にトリビアで、数学的に無価値だろ? (^^
(引用終り)
注:x=0を、あるx0∈[ 0,1 ] としてもよい。
5.これだと、「素人固定論」は不要ですよ。
6.あなたがハマルのは無理ないです。多くの人がハマってますから。(^^
以上
263(1): 2017/11/18(土)14:42 ID:ZcXWWwZM(4/23) AAS
>>250
”uniform probability”だから、確率変数はxだとわかるんですがね
ついでにいうと、私の書き込みが、
あるときはピエロ、またあるときはHigh level people
と判定されますが・・・
結論からいえば、同じIPから書いてるので、
IP情報が見られる人なら違う判断になることはない筈
です
つまりあなたは管理人の権限を有しないと判断されます
283(16): 2017/11/18(土)17:47 ID:LAjmabkB(4/5) AAS
>>250
> 要は、x0を1回のみ試行するなら、”uniform probability”ではない!
> だから、[ 0,1 ]を全部”均等”に実施するのだ!と(もし、別の解釈が可能なら仰ってください)
それ言ったらお前さんサイコロ振れないぞ。。。
286(1): 2017/11/18(土)17:48 ID:LAjmabkB(5/5) AAS
>>250
> 要は、x0を1回のみ試行するなら、”uniform probability”ではない!
> だから、[ 0,1 ]を全部”均等”に実施するのだ!と(もし、別の解釈が可能なら仰ってください)
スレ主さんは確率論に滅法よわいな
312(2): [age] 2017/11/18(土)19:03 ID:7x3OYgbz(6/7) AAS
>>283
> >>250
> > 要は、x0を1回のみ試行するなら、”uniform probability”ではない!
> > だから、[ 0,1 ]を全部”均等”に実施するのだ!と(もし、別の解釈が可能なら仰ってください)
>
> それ言ったらお前さんサイコロ振れないぞ。。。
スレ主の
「1回の試行ではダメだ。全部均等に実施しないとuniform probabilityとは言えない」
が面白かったので再度コピってage
晒したいのではなく名言だと思うので。
そういう人とは違う目線を全否定しちゃ人生つまらないもんね。
325(2): 2017/11/18(土)22:37 ID:ArwEvIcP(1) AAS
>>315
> 測度をまったく度外視してる時点でサイコはハッタリ野郎だと分かる
サイコロが理解できないサイコ
>>283
> >>250
> > 要は、x0を1回のみ試行するなら、”uniform probability”ではない!
> > だから、[ 0,1 ]を全部”均等”に実施するのだ!と(もし、別の解釈が可能なら仰ってください)
>
> それ言ったらお前さんサイコロ振れないぞ。。。
331(5): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/19(日)08:02 ID:W1ZiI7BV(3/34) AAS
>>325
どうも。スレ主です。
鋭い分かり易い指摘ありがとう!(^^
>サイコロが理解できないサイコ
>
>>>283
>> >>250
>> > 要は、x0を1回のみ試行するなら、”uniform probability”ではない!
>> > だから、[ 0,1 ]を全部”均等”に実施するのだ!と(もし、別の解釈が可能なら仰ってください)
>>
>> それ言ったらお前さんサイコロ振れないぞ。。。
そうそう、そうなんだ!(^^
仮に、1回の試行で、私がサイコロを振って、1〜6の目を出して、1/1,1/2,・・・1/6の数字を選んだとしましょう
あるいは、これだと有理数になるから、適当に小さな確定超越数b1,b2,・・・b6を引き算して、[ 0,1 ]の超越数を選ぶとする
(ああ、最初から[ 0,1 ]の確定超越数を6個選んでおいても良い。1/πとか1/eとか・・・ね)
で、これですと、1/3-b3 なる超越数をx0にする
けど、それでは、” choose x with uniform probability from [ 0,1 ]. ”ではないのだ!!(^^
で、一番確実なのは、[ 0,1 ]を全部”均等”に実施して、>>322に記載の”実数確率変数Xが示す範囲の確率を全て記録する”
つまり、f(x)=g(x)であるなしを全て記録する!!(^^
346: 2017/11/19(日)09:18 ID:xbpj1BvL(9/26) AAS
>>343
> サイコのぷふには分からん話w
ぷは病気の大学生
夜3時に2chをやってる悲しき青春
>>344
> ああ、サイコは測度分かってねぇもん
測度論の前にサイコロの確率が分かってない
これが証拠な
>>283
> >>250
> > 要は、x0を1回のみ試行するなら、”uniform probability”ではない!
> > だから、[ 0,1 ]を全部”均等”に実施するのだ!と(もし、別の解釈が可能なら仰ってください)
>
> それ言ったらお前さんサイコロ振れないぞ。。。
355(1): 2017/11/19(日)12:03 ID:xbpj1BvL(12/26) AAS
>>354
> それおまえが
“おまえ”=私ではありませんが何か?
あんたサイコロの確率が分からないと白状した時点で the end ですわ
>>283
> >>250
> > 要は、x0を1回のみ試行するなら、”uniform probability”ではない!
> > だから、[ 0,1 ]を全部”均等”に実施するのだ!と(もし、別の解釈が可能なら仰ってください)
>
> それ言ったらお前さんサイコロ振れないぞ。。。
360(1): 2017/11/19(日)12:31 ID:xbpj1BvL(14/26) AAS
>>355
> >>283
> > >>250
> > > 要は、x0を1回のみ試行するなら、”uniform probability”ではない!
> > > だから、[ 0,1 ]を全部”均等”に実施するのだ!と(もし、別の解釈が可能なら仰ってください)
> >
> > それ言ったらお前さんサイコロ振れないぞ。。。
スレ主はサイコロの確率が分からないと白状したのである
発言>>250はそれ以外に解釈しようがない
>>250
> 要は、x0を1回のみ試行するなら、”uniform probability”ではない!
> だから、[ 0,1 ]を全部”均等”に実施するのだ!と(もし、別の解釈が可能なら仰ってください)
サイコロを1回振る試行で各目が出る事象はuniform probability 1/6
これは 小 学 生 の学習範囲であり、スレ主はこれが分からないと白状したのである
小学生以下のスレ主が他人に対して確率論の本を読めと挑発するのはおかしい
>>299
> 今一度、確率論の本を開いてみたら?
> ああ、すまん、ピエロは、確率論の本読めなかったんだね〜(^^
361(2): 2017/11/19(日)12:39 ID:xbpj1BvL(15/26) AAS
>>250
> 要は、x0を1回のみ試行するなら、”uniform probability”ではない!
> だから、[ 0,1 ]を全部”均等”に実施するのだ!と(もし、別の解釈が可能なら仰ってください)
スレ主はまず自分の間違いを誠実に認めろ
それすらできない奴に議論ができるわけないだろ
370(1): 2017/11/19(日)13:26 ID:xbpj1BvL(16/26) AAS
>>250
> 要は、x0を1回のみ試行するなら、”uniform probability”ではない!
> だから、[ 0,1 ]を全部”均等”に実施するのだ!と(もし、別の解釈が可能なら仰ってください)
スレ主はまず自分の間違いを誠実に認めろ
それすらできない奴に議論ができるわけないだろ
379: 2017/11/19(日)15:18 ID:xbpj1BvL(18/26) AAS
>>354
> それおまえが
“おまえ”=私ではありませんが何か?
あんたサイコロの確率が分からないと白状した時点で the end ですわ
>>283
> >>250
> > 要は、x0を1回のみ試行するなら、”uniform probability”ではない!
> > だから、[ 0,1 ]を全部”均等”に実施するのだ!と(もし、別の解釈が可能なら仰ってください)
>
> それ言ったらお前さんサイコロ振れないぞ。。。
380(2): 2017/11/19(日)15:32 ID:xbpj1BvL(19/26) AAS
>>250
> 要は、x0を1回のみ試行するなら、”uniform probability”ではない!
> だから、[ 0,1 ]を全部”均等”に実施するのだ!と(もし、別の解釈が可能なら仰ってください)
おいスレ主の馬鹿タレ
>>250は間違いだったと認めるのか?
それとも>>250の通りサイコロを振る回数が1回だったらuniform probabilityじゃないのか??
381(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/19(日)15:53 ID:W1ZiI7BV(22/34) AAS
>>380
>それとも>>250の通りサイコロを振る回数が1回だったらuniform probabilityじゃないのか??
1)当然ながら、”uniform probability from [ 0,1 ]”とサイコロのuniform probability (1,2,・・・6)とは異なる
2)イカサマサイコロでは、uniform probability にならない!
3)従って、サイコロのuniform probability (1,2,・・・6)は定義である!(^^
サイコロのuniform probability (1,2,・・・6)の定義は、それぞれの出目に差が無いということ
3)”uniform probability from [ 0,1 ]”も同じ
それぞれの出目に差が無いということ
つまり、各xを均等に1回ずつ数えることに同じ!(^^
QED
384(1): 2017/11/19(日)16:03 ID:xbpj1BvL(20/26) AAS
>>381
会話になっていない
お前は1回の試行ではuniform probabilityとは言えないと言ったのである
choose x with uniform probability from [ 0,1 ]
ならばuniform probabilityではなく
choose x with uniform probability from {0,1,2,3,4,5,6}
ならばuniform probabilityであるという主張は意味不明である
お前の>>250は間違っている
>>283
> >>250
> > 要は、x0を1回のみ試行するなら、”uniform probability”ではない!
> > だから、[ 0,1 ]を全部”均等”に実施するのだ!と(もし、別の解釈が可能なら仰ってください)
>
> それ言ったらお前さんサイコロ振れないぞ。。。
385(1): 2017/11/19(日)16:05 ID:xbpj1BvL(21/26) AAS
>>381
会話になっていない
お前は1回の試行ではuniform probabilityとは言えないと言ったのである
choose x with uniform probability from [ 0,1 ]
ならばuniform probabilityではなく
choose x with uniform probability from {1,2,3,4,5,6}
ならばuniform probabilityであるという主張は意味不明である
お前の>>250は間違っている
>>283
> >>250
> > 要は、x0を1回のみ試行するなら、”uniform probability”ではない!
> > だから、[ 0,1 ]を全部”均等”に実施するのだ!と(もし、別の解釈が可能なら仰ってください)
>
> それ言ったらお前さんサイコロ振れないぞ。。。
392(1): 2017/11/19(日)16:41 ID:xbpj1BvL(23/26) AAS
>>387
話題そらし乙
お前は1回の試行ではuniform probabilityとは言えないと言ったのである
choose x with uniform probability from [ 0,1 ]
ならば[0 ,1]からuniform probabilityでxを選ぶという意味であり、
choose x with uniform probability from {1,2,3,4,5,6}
ならば{1,2,3,4,5,6}からuniform probabilityでxを選ぶという意味である
試行の回数が1回ならばuniform probabilityではないというお前の主張は誤りである
よってお前の>>250は間違っている
この間違いをお前が認めない限り会話は成立しない
>>283
> >>250
> > 要は、x0を1回のみ試行するなら、”uniform probability”ではない!
> > だから、[ 0,1 ]を全部”均等”に実施するのだ!と(もし、別の解釈が可能なら仰ってください)
>
> それ言ったらお前さんサイコロ振れないぞ。。。
396(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/19(日)20:44 ID:W1ZiI7BV(29/34) AAS
>>392
>よってお前の>>250は間違っている
>この間違いをお前が認めない限り会話は成立しない
なにを屁理屈をうだうだと
笑えるよ
腐ってもここは数学板だ。SNSじゃないよ。会話など不要。あんたが正しい証明を1本書けば良いだけだ
おっと、この板に書いてもだれも読まないよ。PDFでA4で10ページなどの原稿を、このバカ板で展開したら数十ページを超えて読めたものじゃないぜ(^^
どっかの学会誌にでも、arxivにでも投稿してくれ
投稿がオープンになったら、このスレに報告してくれ。議論はそれからにしようぜ
結論を言っておくと、「あんたの間違いだよ」!!
会話が成立しない原因は、自分の誤りを認められないからだよ!!
あんたの間違った会話を認めろだと?
そんな会話はお断りだよ!!
なお、ここはおれの立てたスレだということを忘れないでくれ
間違った議論を続けたければ、自分でスレ立てしなよ。あるいは、スレ28は自分が立てたんだろ? それにスレ43も空いているぞ。そっちを使え!!
401(2): 2017/11/19(日)21:11 ID:xbpj1BvL(24/26) AAS
>>396
> 結論を言っておくと、「あんたの間違いだよ」!!
> 会話が成立しない原因は、自分の誤りを認められないからだよ!!
>
> あんたの間違った会話を認めろだと?
> そんな会話はお断りだよ!!
>
> なお、ここはおれの立てたスレだということを忘れないでくれ
> 間違った議論を続けたければ、自分でスレ立てしなよ。あるいは、スレ28は自分が立てたんだろ? それにスレ43も空いているぞ。そっちを使え!!
怒り発狂するようでは数学はできない
まずは冷静になりましょう
お前は1回の試行ではuniform probabilityとは言えないと言ったのである
choose x with uniform probability from [ 0,1 ]
ならば[0 ,1]からuniform probabilityでxを選ぶという意味であり、
choose x with uniform probability from {1,2,3,4,5,6}
ならば{1,2,3,4,5,6}からuniform probabilityでxを選ぶという意味である
試行の回数が1回ならばuniform probabilityではないというお前の主張は誤りである
よってお前の>>250は間違っている
この間違いをお前が認めない限り他人との議論は成立しない
>>283
> >>250
> > 要は、x0を1回のみ試行するなら、”uniform probability”ではない!
> > だから、[ 0,1 ]を全部”均等”に実施するのだ!と(もし、別の解釈が可能なら仰ってください)
>
> それ言ったらお前さんサイコロ振れないぞ。。。
403(1): 2017/11/19(日)21:28 ID:xbpj1BvL(25/26) AAS
注意欠陥・多動性障害(wikiより引用)
かつては子供だけの症状であり、成人になるにしたがって改善されると考えられていたが、近年は大人になっても残る可能性があると理解されている[10]。
その場合は多動ではなく、感情的な衝動性(言動に安定性がない、順序立てた考えよりも感情が先行しがち、論理が飛躍した短絡的な結論に至りやすい)や
注意力(シャツをズボンから出し忘れる、シャツをズボンに入れ忘れる、ファスナーを締め忘れるといったミスが日常生活で頻発する、など)や集中力の欠如が多い[5]。
----
感情的な衝動性(言動に安定性がない、順序立てた考えよりも感情が先行しがち、論理が飛躍した短絡的な結論に至りやすい)
----
[感情が先行しがち]
>>396
> 結論を言っておくと、「あんたの間違いだよ」!!
> 会話が成立しない原因は、自分の誤りを認められないからだよ!!
>
> あんたの間違った会話を認めろだと?
> そんな会話はお断りだよ!!
>
> なお、ここはおれの立てたスレだということを忘れないでくれ
> 間違った議論を続けたければ、自分でスレ立てしなよ。あるいは、スレ28は自分が立てたんだろ? それにスレ43も空いているぞ。そっちを使え!!
[論理が飛躍した短絡的な結論]
>>283
> >>250
> > 要は、x0を1回のみ試行するなら、”uniform probability”ではない!
> > だから、[ 0,1 ]を全部”均等”に実施するのだ!と(もし、別の解釈が可能なら仰ってください)
>
> それ言ったらお前さんサイコロ振れないぞ。。。
407: 2017/11/19(日)22:43 ID:xbpj1BvL(26/26) AAS
注意欠陥・多動性障害(wikiより引用)
かつては子供だけの症状であり、成人になるにしたがって改善されると考えられていたが、近年は大人になっても残る可能性があると理解されている[10]。
その場合は多動ではなく、感情的な衝動性(言動に安定性がない、順序立てた考えよりも感情が先行しがち、論理が飛躍した短絡的な結論に至りやすい)や
注意力(シャツをズボンから出し忘れる、シャツをズボンに入れ忘れる、ファスナーを締め忘れるといったミスが日常生活で頻発する、など)や集中力の欠如が多い[5]。
----
感情的な衝動性(言動に安定性がない、順序立てた考えよりも感情が先行しがち、論理が飛躍した短絡的な結論に至りやすい)
----
[感情が先行しがち]
>>396
> 結論を言っておくと、「あんたの間違いだよ」!!
> 会話が成立しない原因は、自分の誤りを認められないからだよ!!
>
> あんたの間違った会話を認めろだと?
> そんな会話はお断りだよ!!
>
> なお、ここはおれの立てたスレだということを忘れないでくれ
> 間違った議論を続けたければ、自分でスレ立てしなよ。あるいは、スレ28は自分が立てたんだろ? それにスレ43も空いているぞ。そっちを使え!!
[論理が飛躍した短絡的な結論]
>>404
> あなたのは、数学ではない
>
> 似非数学であり、数学ごっこディベートにすぎないよ
>>283
> >>250
> > 要は、x0を1回のみ試行するなら、”uniform probability”ではない!
> > だから、[ 0,1 ]を全部”均等”に実施するのだ!と(もし、別の解釈が可能なら仰ってください)
>
> それ言ったらお前さんサイコロ振れないぞ。。。
409(6): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/20(月)06:51 ID:ZSJdGnU3(2/5) AAS
>>408 つづき
<[論理が飛躍した短絡的な結論]>
参考:>>194-196 >>243 >>250より
・確かに、数学では、変数が多いときに、例えば他の変数を固定して偏微分を考えることがある
・だが、偏微分だけで済ませて、”終わり”では大間違い
・もともとは、全て変数だったとすれば、便法に変数固定の偏微分を使ったとしても、最後は全変数への考究が必要だ
・”uniform probability”でサイコロを1回、出目は2、結果は丁(偶数)。よって「結論:”uniform probability”でサイコロを1回振れば、結果は丁(偶数)」という誤りが導かれる如し
・この理屈が分らないHigh level peopleは、自分達の<[論理が飛躍した短絡的な結論]>に気付かない
(参考)
外部リンク:ja.wikipedia.org 全微分
外部リンク:ja.wikipedia.org 偏微分
(抜粋)
数学の多変数微分積分学における偏微分(へんびぶん、partial derivative)は、多変数関数に対して一つの変数のみに関する(それ以外の変数は定数として固定する(英語版))微分である(全微分では全ての変数を動かしたままにするのと対照的である)。
(引用終り)
つづく
509: 2017/11/23(木)10:32 ID:jgGp1UXf(4/5) AAS
サイコロを1回振ったときに各目が出る事象は
> uniform probabilityではない!
とスレ主は言ってたが、これは訂正しないのか?w
312 名前:132人目の素数さん[age] 投稿日:2017/11/18(土) 19:03:50.75
>>283
> >>250
> > 要は、x0を1回のみ試行するなら、”uniform probability”ではない!
> > だから、[ 0,1 ]を全部”均等”に実施するのだ!と(もし、別の解釈が可能なら仰ってください)
>
> それ言ったらお前さんサイコロ振れないぞ。。。
スレ主の
「1回の試行ではダメだ。全部均等に実施しないとuniform probabilityとは言えない」
が面白かったので再度コピってage
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.044s