[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む46 (692レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
19(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)08:39 ID:cTg/FCp5(19/94) AAS
>>18 つづき
3.
問題に戻り,閉じた箱を100列に並べる.
箱の中身は私たちに知らされていないが, とにかく第l列の箱たち,第2列の箱たち第100 列の箱たちは100本の実数列s^1,s^2,・・・,s^100を成す(肩に乗せたのは指数ではなく添字).
これらの列はおのおの決定番号をもつ.
さて, 1〜100 のいずれかをランダムに選ぶ.
例えばkが選ばれたとせよ.
s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない.
第1列〜第(k-1) 列,第(k+1)列〜第100列の箱を全部開ける.
第k列の箱たちはまだ閉じたままにしておく.
開けた箱に入った実数を見て,代表の袋をさぐり, s^1〜s^(k-l),s^(k+l)〜s^100の決定番号のうちの最大値Dを書き下す.
いよいよ第k列 の(D+1) 番目から先の箱だけを開ける:s^k(D+l), s^k(D+2),s^k(D+3),・・・.いま
D >= d(s^k)
を仮定しよう.この仮定が正しい確率は99/100,そして仮定が正しいばあい,上の注意によってs^k(d)が決められるのであった.
おさらいすると,仮定のもと, s^k(D+1),s^k(D+2),s^k(D+3),・・・を見て代表r=r(s^k) が取り出せるので
列r のD番目の実数r(D)を見て, 「第k列のD番目の箱に入った実数はs^k(D)=rDと賭ければ,めでたく確率99/100で勝てる.
確率1-ε で勝てることも明らかであろう.
(補足)
s^k(D+l), s^k(D+2),s^k(D+3),・・・, rD:ここで^kは上付き添え字、(D+l), Dなどは下付添え字
つづく
21(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)08:40 ID:cTg/FCp5(21/94) AAS
>>19 つづき
さらに、数学セミナー201511月号P37 時枝記事に、次の一文がある
「R^N/〜 の代表系を選んだ箇所で選択公理を使っている.
その結果R^N →R^N/〜 の切断は非可測になる.
ここは有名なヴィタリのルベーグ非可測集合の例(Q/Zを「差が有理数」で類別した代表系, 1905年)にそっくりである.」
さらに、過去スレでは引用しなかったが、続いて下記も引用する
「逆に非可測な集合をこさえるには選択公理が要る(ソロヴェイ, 1970年)から,この戦略はふしぎどころか標準的とさえいえるかもしれない.
しかし,選択公理や非可測集合を経由したからお手つき, と片付けるのは,面白くないように思う.
現代数学の形式内では確率は測度論によって解釈されるゆえ,測度論は確率の基礎, と数学者は信じがちだ.
だが,測度論的解釈がカノニカル, という証拠はないのだし,そもそも形式すなわち基礎, というのも早計だろう.
確率は数学を越えて広がる生き物なのである(数学に飼いならされた部分が最も御しやすいけれど).」
つづく
55(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)09:07 ID:cTg/FCp5(55/94) AAS
>>53 つづき
スレ45 2chスレ:math
544 返信:現代数学の系譜 工学物理雑談 古典ガロア理論も読む[sage] 投稿日:2017/11/07(火) 14:40:22.74 ID:/DwZQaZ/ [5/5]
>>543 追記
そうそう、書き忘れたが、
時枝で、100列作るでしょ(>>19より)
その各列に、>>541で書いたように、
XOR’S HAMMERの任意関数の数当て解法を適用すれば
任意の100個の箱の数が、確率1で当たります(^^
n列作れば、任意のn個の箱が、確率1で当たります(^^
もし、XOR’S HAMMERの任意関数の数当て解法が正しいなら
Sergiu Hart氏のpuzzle及び時枝記事の加算無限個数列の数当て解法なんて、ゴミでしょ(^^
だから、この点からも、XOR’S HAMMERの任意関数の数当て解法は、パズルに過ぎないと分かる(^^
599(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/26(日)23:44 ID:1WQ1V5QH(34/34) AAS
>>595
>> 「(6面)サイコロの目を当てる確率は1/6」は、実質定義だ!
>数当て戦略で「6列の無限数列の(全て異なると仮定した)決定番号の最大値を引く確率が1/6」も同じこと
話は、全く逆
1.上記>>593 原隆先生の”1.4 確率変数と期待値” サイコロの出た目の数をX とする 確率変数 P[X = i] = 1/6 と言うのが自然な定義
2.これを、時枝の可算無限個の箱に、頭からしっぽまで全部入れる。従って、箱は全て確率 = 1/6 と言うのが自然な定義
(ここは、12面サイコロでも良いし、もともとは任意の実数で良かったのだった!!)
3.時枝記事(>>19)は、これが100列に並び変えると、1/6 であった定義のある一つの箱について99/100で的中できるという。箱を開けなくても当てられるという
4.時枝先生は、これを”ふしぎな戦略”(>>22)と呼ぶ。
5.一方、あなたは、”ふしぎでもなんでもない”という。
6.私は、明らかに、「あなたは時枝記事が読めていない!」と思いますよ(^^
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.030s