[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む46 (692レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
174(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/15(水)08:25 ID:dypommzJ(2/9) AAS
>>171
ピエロ、ありがとう
たまらずPDFアップかな(^^
まあ、数学的には、論文にするには、その程度必要だわな
要は、1/q^v でvの臨界指数で類別する。それはおれも考えていた
>>153に書いたように、1/q^nの指数n で、”1/q^3でもいいかも知れない”と書いたが、数学的にはどこか臨界指数があるだろうと
ただ、最初の問題なら、単に指数nを大きくするだけで足りるから、証明はそれほど難しくない
>>173に書いたように、x0の収束列の存在から、|ki/i - x0| > |ki+1/i+1 - x0| と、|ki/i - x0|に対して下からの評価が使えそうと思いついたところだった
まあ、証明を考える手間が省けたので助かったよ
問題を考え出したのは、昨日の昼頃からだから、実質1日弱かな(^^
>>83 & >>146のヒントがなければ、無理だが、これだけヒントがあれば、あとは何とかなるよ(^^
164(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/14(火)20:42 ID:agSxZaXK(10/15) AAS
>>159
ガロア語録 "On jugera":「証明は思いつくであろう」(^^
スレ4 2chスレ:math
229 返信:現代数学の系譜11 ガロア理論を読む[] 投稿日:2012/05/11(金) 07:53:48.30
下記"On jugera"について
the crucial lemmaは、>>3では、第III節の定理で
"On jugera":「証明は思いつくであろう」と守屋は訳している
”My opinion is in paragraph 37" (freely translated)”は、Edwards (著) Galois Theory>>174の序文 ページixの通りなので、この文はここから採ったのだろう
外部リンク[html]:www2.ee.ufpe.br
A BIT OF HISTORY: GALOIS' LIFE.
ON THE STATEMENT "On jugera".
This famous passage is the one where Galois proves the crucial lemma stating that any rational function of the roots can be expressed as a rational function of the Galois resolvent.
Poisson (What about him?) had called Galois' prove insufficient. Galois, rather than elucidate his proof, laconically replied, "That remains to be seen.
My opinion is in paragraph 37" (freely translated).
It is easy to understand Poisson's position. Galois' proof can be regarded as as, at best, a sketch, and therefore is certainly "insufficient" if one is in any doubt as to the correctness of his theory and the accuracy of his reasoning.
In his report to the Academy, Poisson said of Galois' memoir as a whole that
<< We have made every effort to understand Mr. Galois' proof. His argument are not clear enough, nor developed enough, for us to be able to judge their correctness... >>.
つづく
181(2): 2017/11/15(水)19:42 ID:fz0TcIh0(2/3) AAS
>>174
>要は、1/q^v でvの臨界指数で類別する。それはおれも考えていた
無理するな
>数学的にはどこか臨界指数があるだろう
微分可能な点が出てくるところを臨界といってるなら、2を超えた瞬間
ところで貴様は英語が読めないみたいだから教えてやるが
任意のnで、微分不可能な無理数は存在する
さらにいえば、1/q^nを1/e^(-q)に置き換えても
リュービル数では微分不可能外部リンク[pdf]:kbeanland.files.wordpress.com
183(1): 2017/11/15(水)19:58 ID:aDiqJIlZ(2/5) AAS
>>174
>>>83 & >>146のヒントがなければ、無理だが、これだけヒントがあれば、あとは何とかなるよ(^^
εδも理解せずにどこからその自信が出て来るのか謎
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.038s