[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む46 (692レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
115(5): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)20:34 ID:cTg/FCp5(89/94) AAS
>>113
"choose x with uniform probability from [0,1]."だから
(ルベーグの意味で)積分できる
積分できるから、(>>64 >>57より)
「fと上記区間内の測度0の集合上のxで値が異なるだけのg」が意味を持つ
具体的には、>>87に書いたように、
1)Δf = f(x)−f'(x) の関連で、Bobのf(x)と代表f'(x)とが一致するとき(当りのとき)は値1、不一致のとき(当らないとき)は値0、となる関数Δ’fを考える
2)関数Δ’fを、ルベーグの意味で、xについて区間[ 0,1 ]で積分する
3)不一致が、上記区間内の測度0ゆえ、積分値は1
ってこと。積分値が1ってことが、確率1(測度論による確率)ってこと(下記引用>>57に同じ)
前スレ828で「uniform probabilityの意味は?」と聞いたのは、そういう意図だよ
数学的な意味は、それで終り(英文法の問題ではない)!!(^^
<参考>
>>57
→fと上記区間内の測度0の集合上のxで値が異なるだけのgを
fと同値とする同値関係を定義し同値類の代表元f'をとれば、
x∈Sについてf(x)=f'(x)となる確率は1 (区間[0,1]上の測度で考える)
(引用終り)
116(2): 2017/11/12(日)20:44 ID:hePUuc7P(7/13) AAS
>>115
一様分布の測度を今になっておさらいしなくてもいいと思うんですが。
自分のためのメモですか?
貴方は>>108で誤読を犯したわけですが、
>>115はそれを指摘した>>113へのレスになってるんですか?
順番を間違えていたことは認めるんですか?認めないんですか?
まず認めましょうよ。読み間違っていたことは。
119(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)21:06 ID:cTg/FCp5(91/94) AAS
>>117
それは、>>115を読めば分ることだろ?
数学的意味はそれで終りだ。
あとは、それを自然言語でかみ砕いて説明しているだけ
自然言語でかみ砕いた説明と、>>115を併読せよ
124(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)22:12 ID:cTg/FCp5(92/94) AA×
>>119>>61>>115

125(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)22:16 ID:cTg/FCp5(93/94) AAS
>>120
上記>>119の補足に注意して、もう一度>>115を読んでみな
(>>116)"一様分布の測度を今になっておさらいしなくてもいいと思うんですが。自分のためのメモですか?"
と、違う風景が見えるだろう(^^
<参考>
(>>61より)
簡単な話で、”choose x in Step 2 with uniform probability from [ 0,1 ]”だから、 Gameを、[ 0,1 ]の0から初めて1に達するまで、続ける
x=0のときに、Bobのf(x)が分って、同値類が分って、代表f'(x)が決まる。あとを続ければ、Δf = f(x)−f'(x) は、”定義の通り” [ 0,1 ]では有限個しか不一致がないんだ
それだけのこと。つまり、x=0のときに、代表f'(x)が決まるから、あとはどこで有限個が外れるか、その時点で全て分るわけさ!! (^^
これだと、関数の数当てとしては、完全にトリビアで、数学的に無価値だろ? (^^
(引用終り)
134(1): 2017/11/13(月)06:29 ID:HuwuwlGZ(1) AAS
>>115
>(ルベーグの意味で)積分できる
>Bobのf(x)と代表f'(x)とが一致するとき(当りのとき)は値1、
>不一致のとき(当らないとき)は値0、となる関数Δ’fを考える
Δ’fを考えるのに>>61
「[ 0,1 ]の0から初めて1に達するまで、(1or0の判定を)続ける」
なんて書く時点で頭悪いのが分かるな
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.053s