[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む46 (692レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む46 http://rio2016.5ch.net/test/read.cgi/math/1510442940/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
596: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/11/26(日) 23:26:10.78 ID:1WQ1V5QH >>575 補足 原本PDFを見て貰った方が視認性は良いが、後の検索性のためにコピペする(^^ http://www.unirioja.es/cu/jvarona/downloads/Differentiability-DA-Roth.pdf DIFFERENTIABILITY OF A PATHOLOGICAL FUNCTION, DIOPHANTINE APPROXIMATION, AND A REFORMULATION OF THE THUE-SIEGEL-ROTH THEOREM JUAN LUIS VARONA 2009 (抜粋) P7 4. The theorem of Thue-Siegel-Roth revisited Or, equivalently, if x is an irrational algebraic number, there exists a positive constant C(x, α) such that |x - p/q |< C(x, α)/q^(2+α) (10) has no rational solution. P8 Remark 3. We have proved Theorem 3 by using the Thue-Siegel-Roth theorem. But we have said that it is a reformulation. So, let us see how to deduce the Thue-Siegel-Roth theorem from Theorem 3. Given x algebraic and irrational, and ν > 2, Theorem 3 ensures that fν is differentiable at x, so there exists lim y→x {fν(y) - fν(x)}/(y - x) = f’ν (x). By approximating y → x by irrationals y, it follows that f’ν (x) = 0. Consequently, by approximating y → x by rationals, i.e., y = p/q, we also must have lim p/q→x {fν(p/q) - fν(x)}/(p/q - x ) = lim p/q→x (1/qν)/(p/q - x) = 0. Then, for every ε > 0, there exists δ > 0 such that 1/(q^ν) <= ε|p/q - x| when p/q ∈ (x - δ, x + δ). From here, it is easy to check that the same happens for every p/q ∈ Q, perhaps with a greather constant ε' in the place of ε. Thus, (10) with α = ν-2 and some positive constant C(x, α) = 1/ε' has no rational solution, and we have obtained the Thue-Siegel-Roth theorem. (引用終り) つづく http://rio2016.5ch.net/test/read.cgi/math/1510442940/596
597: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/11/26(日) 23:27:55.08 ID:1WQ1V5QH >>596 つづき 上記は下記のここやね(^^ 「α が代数的な数に限らず実数全体とすると、ロスの定理(とラングの予想の双方)は、ほとんど全ての実数 α に対して成立する」ってことなんだ!(^^ ようやく理解できたよ(^^ https://ja.wikipedia.org/wiki/%E3%83%88%E3%82%A5%E3%82%A8%E3%83%BB%E3%82%B8%E3%83%BC%E3%82%B2%E3%83%AB%E3%83%BB%E3%83%AD%E3%82%B9%E3%81%AE%E5%AE%9A%E7%90%86 トゥエ・ジーゲル・ロスの定理 (抜粋) トゥエ・ジーゲル・ロスの定理(英: Thue?Siegel?Roth theorem)、あるいは単にロスの定理 (Roth's theorem) は、代数的数に対するディオファントス近似における基本的な定理である。定量的な定理であり、与えられた代数的数 α が「非常に良い」有理数近似をそれほど多くは持たないかもしれないというものである。 半世紀以上に渡って、この「非常に良い」の意味は多くの数学者によって改良されていった。はじめは1844年にジョゼフ・リウヴィルによって、そして Axel Thue (1909), Carl Ludwig Siegel (1921), Freeman Dyson (1947), Klaus Roth (1955) らの仕事が続いた。 議論 この種の議論における最初の結果は、代数的数の近似に関するリウヴィルの定理で、次数 d ? 2 の代数的数 α に対するディオファントス近似の指数を d と与える。超越数の存在を示すにはこの近似で充分であった(リウヴィル数参照)。 トゥエは d より小さな指数をディオファントス方程式の解に対して適用でき得ることを見出し、1909年にトゥエの定理 (Thue's theorem) から、指数は d/2 + 1 + ε であることを示した。その後、ジーゲルの定理 (Siegel's theorem) によって 2√d、1947年のダイソンの定理 (Dyson's theorem) によって √(2d) と指数の値が改良された。 指数が 2 となるロスの定理は、ε = 0 とすると定理が成立しないという意味で最良である。ディリクレのディオファントス近似定理により、任意の無理数に対し無限個の解が存在するからである。しかし、サージ・ラングによるより強い予想: |α - p/q|< 1/{q^2*log q^(1+ε)} は整数解 p, q を有限個しか持たないという予想がある。 α が代数的な数に限らず実数全体とすると、ロスの定理とラングの予想の双方は、ほとんど全ての実数 α に対して成立する。 つづく http://rio2016.5ch.net/test/read.cgi/math/1510442940/597
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.032s