[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む46 (692レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む46 http://rio2016.5ch.net/test/read.cgi/math/1510442940/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
575: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/11/26(日) 18:47:23.18 ID:1WQ1V5QH >>398 補足 戻る http://www.unirioja.es/cu/jvarona/downloads/Differentiability-DA-Roth.pdf DIFFERENTIABILITY OF A PATHOLOGICAL FUNCTION, DIOPHANTINE APPROXIMATION, AND A REFORMULATION OF THE THUE-SIEGEL-ROTH THEOREM JUAN LUIS VARONA 2009 fν(x) =0 if x ∈ R - Q(無理数) =1/q^ν if x = p/q ∈ Q, irreducible (有理数で既約分数) で Theorem 1. For ν > 2, the function fν is discontinuous (and consequently not differentiable) at the rationals, and continuous at the irrationals. With respect the differentiability, we have: (a) For every irrational number x with bounded elements in its continued fraction expansion, fν is differentiable at x. (b) There exist infinitely many irrational numbers x such that fν is not differentiable at x. Moreover, the sets of numbers that fulfill (a) and (b) are both of them un-countable. (引用終り) ここ、無理数を (a) For every irrational number x with bounded elementsと、 (b) There exist infinitely many irrational numbers x such that fν is not differentiable at x.と 完全に2分したと読んだので、あとの測度論の下記Theorem 2 P6 Theorem 2. For ν > 2, let us denote Cν = {f ∈ R : fν is continuous at x } Dν = {f ∈ R : fν is differentiable at x } Then, the Lebesgue measure of the sets R - Cν and R - Dν is 0, but the four sets Cν, R - Cν, Dν, and R - Dν are dense in R. (引用終り) つづく http://rio2016.5ch.net/test/read.cgi/math/1510442940/575
576: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/11/26(日) 18:48:14.32 ID:1WQ1V5QH >>575 つづき これと、 http://argent.shinshu-u.ac.jp/lecture/files/pdf/cfracb5.pdf A. Ya. ヒンチン(Khinchin)著 連分数 (訳:乙部厳己)1961 P58 定理29. (0, 1) の中の有界な要素をもつ数の全体は測度0 である。 (引用終り) とが整合しないので、いろいろ調べていたんだ(>>556とか)(^^ ようやく分ったのは、 Dν≠{x |(a) For every irrational number x with bounded elements in its continued fraction expansion, fν is differentiable at x.} じゃないんだ!(^^ VARONA氏のP5 Lemma 3 g(t)について示しているように、”for almost all x”がDνなんだ。 つまり、”Dν={x | for almost all x at Lemma 3 }”みたい(^^ 上記の”(b) There exist infinitely many irrational numbers x such that fν is not differentiable at x.”は、こんなのもあると、一例を示したと 1週間近く悩んでいたんだ(^^ 以上 http://rio2016.5ch.net/test/read.cgi/math/1510442940/576
596: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/11/26(日) 23:26:10.78 ID:1WQ1V5QH >>575 補足 原本PDFを見て貰った方が視認性は良いが、後の検索性のためにコピペする(^^ http://www.unirioja.es/cu/jvarona/downloads/Differentiability-DA-Roth.pdf DIFFERENTIABILITY OF A PATHOLOGICAL FUNCTION, DIOPHANTINE APPROXIMATION, AND A REFORMULATION OF THE THUE-SIEGEL-ROTH THEOREM JUAN LUIS VARONA 2009 (抜粋) P7 4. The theorem of Thue-Siegel-Roth revisited Or, equivalently, if x is an irrational algebraic number, there exists a positive constant C(x, α) such that |x - p/q |< C(x, α)/q^(2+α) (10) has no rational solution. P8 Remark 3. We have proved Theorem 3 by using the Thue-Siegel-Roth theorem. But we have said that it is a reformulation. So, let us see how to deduce the Thue-Siegel-Roth theorem from Theorem 3. Given x algebraic and irrational, and ν > 2, Theorem 3 ensures that fν is differentiable at x, so there exists lim y→x {fν(y) - fν(x)}/(y - x) = f’ν (x). By approximating y → x by irrationals y, it follows that f’ν (x) = 0. Consequently, by approximating y → x by rationals, i.e., y = p/q, we also must have lim p/q→x {fν(p/q) - fν(x)}/(p/q - x ) = lim p/q→x (1/qν)/(p/q - x) = 0. Then, for every ε > 0, there exists δ > 0 such that 1/(q^ν) <= ε|p/q - x| when p/q ∈ (x - δ, x + δ). From here, it is easy to check that the same happens for every p/q ∈ Q, perhaps with a greather constant ε' in the place of ε. Thus, (10) with α = ν-2 and some positive constant C(x, α) = 1/ε' has no rational solution, and we have obtained the Thue-Siegel-Roth theorem. (引用終り) つづく http://rio2016.5ch.net/test/read.cgi/math/1510442940/596
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
Google検索
Wikipedia
ぬこの手
ぬこTOP
1.891s*