[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む46 (692レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む46 http://rio2016.5ch.net/test/read.cgi/math/1510442940/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
480: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/11/22(水) 19:17:55.55 ID:mEHYOxL2 >>479 つづき 1) さて、まず、[HT08b] より (抜粋) P91 1. INTRODUCTION. We often model systems that change over time as functions from the real numbers R (or a subinterval of R) into some set S of states, and it is often our goal to predict the behavior of these systems. Generally, this requires rules governing their behavior, such as a set of differential equations or the assumption that the system (as a function) is analytic. With no such assumptions, the system could be an arbitrary function, and the values of arbitrary functions are notoriously hard to predict. After all, if someone proposed a strategy for predicting the values of an arbitrary function based on its past values, a reasonable response might be, “That is impossible. Given any strategy for predicting the values of an arbitrary function, one could just define a function that diagonalizes against it: whatever the strategy predicts, define the function to be something else.” This argument, however, makes an appeal to induction: to diagonalize against the proposed strategy at a point t, we must have already defined our function for all s < t in order to determine what the strategy would predict at t. In fact, the lack of well-orderedness in the reals can be exploited to produce a very counterintuitive result: there is a strategy for predicting the values of an arbitrary function, based on its previous values, that is almost always correct. Specifically, given the values of a function on an interval (?∞, t), the strategy produces a guess for the values of the function on [t,∞), and at all but countably many t, there is an ε > 0 such that the prediction is valid on [t, t + ε). Noting that any countable set of reals has measure 0, we can restate this informally: at almost every instant t, the strateg predicts some “ε-glimpse” of the future. つづく http://rio2016.5ch.net/test/read.cgi/math/1510442940/480
481: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/11/22(水) 19:18:43.01 ID:mEHYOxL2 >>480 つづき Nevertheless, we choose this presentation because we find it the most interesting, as well as pedagogically useful. For instance, “predicting the present” is a very natural way to think of the problem of guessing the value of f (t) based on f |(?∞, t). 2. THE μ-STRATEGY. (詳細は略すので、原文ご参照。ここに引用するには、数学記号が複雑過ぎるので。) P92 3. PREDICTING THE PRESENT. (詳細は略すので、原文ご参照。ここに引用するには、数学記号が複雑過ぎるので。) Corollary 3.4. If T = R and ∇ is <, then W0 is countable, has measure 0, and is nowhere dense. What Corollary 3.4 tells us is that, if we model the universe as a function from the real numbers into some set of states, then the μ-strategy will correctly predict the present from the past on a set of full measure. (In the following section, we show that, on a set of full measure, it correctly predicts some of the future as well.) Note that these results concerning T = R are also valid when T is any interval of reals. One needs to be cautious about interpreting this as meaning that the μ-strategy is correct with probability 1. For a fixed true scenario, if one randomly selects an instant t in the interval [0,1] (or in R, under a suitable probability distribution), then Corollary 3.4 does tell us that the μ-strategy will be correct at t with probability 1. However, if one fixes the instant t, and randomly selects a true scenario, then the probability that the μ-strategy is correct at t under that scenario might be 0 or might not even exist, depending on how one defines the notion of a random scenario. P95 W = {t ∈ R | the μ-strategy does not guess well at t }. Theorem 5.1. The set W is countable, has measure 0, and is nowhere dense. つづく http://rio2016.5ch.net/test/read.cgi/math/1510442940/481
502: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/11/23(木) 08:56:21.13 ID:A258vGqh >>485 <ついでに補足> 1.[HT08b](XOR’S HAMMERのパズル元ネタ)は、XOR’S HAMMERのパズルそのものとは微妙に異なる 2.[HT08b]は、>>480 "if someone proposed a strategy for predicting the values of an arbitrary function based on its past values" とあるように、元々は、過去の関数値から、現在又は未来の関数値を予測するという話だった 3.但し、>>481 "For a fixed true scenario, if one randomly selects an instant t in the interval [0,1] (or in R, under a suitable probability distribution)"と一言注釈が入った 4.おそらく、XOR’S HAMMER氏は、ここをピックアップして、”XOR’S HAMMERの任意関数の数当て解法”パズル(>>56)を考案したんだろう が、当然(>>481) ”However, if one fixes the instant t, and randomly selects a true scenario, then the probability that the μ-strategy is correct at t under that scenario might be 0 or might not even exist, depending on how one defines the notion of a random scenario.” も読んでいて、あくまでパズルだと、”Here’s a puzzle:”(>>50より)を明記したわけだ 以上、補足まで http://rio2016.5ch.net/test/read.cgi/math/1510442940/502
570: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/11/26(日) 15:18:44.07 ID:1WQ1V5QH >>565 (>>480より) 1) [HT08b] (抜粋) P91 1. INTRODUCTION. With no such assumptions, the system could be an arbitrary function, and the values of arbitrary functions are notoriously hard to predict. After all, if someone proposed a strategy for predicting the values of an arbitrary function based on its past values, a reasonable response might be, “That is impossible. Given any strategy for predicting the values of an arbitrary function, ・・・” (引用終り) だから、 この大げさな、”INTRODUCTION”にある [HT08b] でのこの大げさに書いた ”what the strategy would predict at t.”の部分が すっかり成書では、削除された。 そして、成書には、”7 The Topological Setting ・・・71”として7章でTopologicalな条件付きの議論になったわけ。 つまり、”With no such assumptions, the system could be an arbitrary function, and the values of arbitrary functions are notoriously hard to predict.”ではなく、繰返すが、Topologicalな条件付きの議論に後退したわけだ(^^ そしてそれは、数学として、当然だわ・・(^^ http://rio2016.5ch.net/test/read.cgi/math/1510442940/570
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.033s