[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む46 (692レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
505
(3): 2017/11/23(木)10:03 ID:jgGp1UXf(1/5) AAS
>>501-503
言いたい放題の馬鹿モノめ

> For a fixed true scenario, if one randomly selects an instant t in the interval [0,1] (or in R, under a suitable probability distribution),
> then Corollary 3.4 does tell us that the μ-strategy will be correct at t with probability 1.
> However, if one fixes the instant t, and randomly selects a true scenario, then the probability that the μ-strategy is correct at t under
> that scenario might be 0 or might not even exist, depending on how one defines the notion of a random scenario.

これは昔からさんざん言ってきたことで、お前と"ぷ"だけが分かってないことだろうが。

156 自分:132人目の素数さん[sage] 投稿日:2017/08/19(土) 22:46:59.17

>(1)FixされたR^Nに対して99/100が成り立つ からと言って
>(2)確率的に選ばれるR^Nに対して99/100が成り立つ は言えない

(1') サイコロの確率だけで99/100が言える問題設定=時枝記事の前半部分=上記(1)の設定
(2') 非可測性が問題になるR^N X 100 を確率標本に取った問題設定=上記(2)の設定
時枝記事を理解できるかは、この2つを区別できるかどうかにかかっていると言ってよい。

記事の前半を正しく(1')の設定で読んだとしたら確率99/100は論理で理解できる。
ただし記事の後半は個々の箱のr_i∈Rの独立性を議論している。
(1')の設定では各r_iは固定されており、そもそも確率事象ではなく独立性は関係ない。
よって記事の後半は(2')の設定を頭に浮かべながら読むのがいいだろう。

非可測性の観点から記事前半の戦略を否定する人は設定を取り違えて(2')と解釈している。
あるいは相手の考えている設定にはお構いなく(2')の設定で議論する。このため話がすれ違う。
とはいえ、記事の後半を読むと(2')に誘導させられる気持ちも分かる。
取り違えの誘発は時枝氏の意図である可能性もある。

・(1')と(2')の違いが分からない
・決定番号は∞
・サイコロで箱の数を決めれば現代確率論に反するので当てられない
・カントールは間違っている

こういう手合いは第三の勢力で、あまりマトモなものではない。
507: 2017/11/23(木)10:11 ID:jgGp1UXf(2/5) AAS
スレ主のバカ回答を思い起こさせてやろう。
訂正するならしておけ

あ の と き の 自 分 は 間 違 い で し た

こ の 設 定 で は 確 率 99/100 が 正 し い で す

と言え。

663 返信:現代数学の系譜 工学物理雑談 古典ガロア理論も読む[sage] 投稿日:2017/10/23(月) 08:38:12.92 ID:kk7vup+h [3/5]
>>657
>> 「箱の中身はいれかえずにただ、列だけを選び直す試行を繰り返す」
>> という論外の設定だったら確率99/100は認めるの?認めないの?
>
>これは 認めない という回答でよろしいな?

回答:認めない
理由:それ、暗黙の前提として、

1列から100列まで、有限m個の箱の数列として
決定番号が、d1,d2,・・・,d100とすると

で、d1,d2,・・・,d100が分散して全て異なると思っている
だが、>>558に示したように、「”確率1”で d1 = d2 = ・・・ = d100 = m」と考えるべき場合もある(有限長列)

”d1,d2,・・・,d100が分散して全て異なる”が未証明だよ
暗黙の前提をしっかり掘り下げるのが数学。スルーは(ピエロの)算数
508: 2017/11/23(木)10:15 ID:jgGp1UXf(3/5) AAS
おいスレ主、お前は訂正すべきことが山ほどあるぞ

数学をやってるつもりならきちんと訂正しろ
訂正しないならお前のは似非数学、トンデモ数学だよ

>>408
> ・uniform probabilityという与えられた問題の条件で、その解答が、1回の試行で単に”uniform probabilityを満たしているから”の一言で済ませて正解と言えるのか?

>>409
> ・”uniform probability”でサイコロを1回、出目は2、結果は丁(偶数)。よって「結論:”uniform probability”でサイコロを1回振れば、結果は丁(偶数)」という誤りが導かれる如し
> ・この理屈が分らないHigh level peopleは、自分達の<[論理が飛躍した短絡的な結論]>に気付かない
509: 2017/11/23(木)10:32 ID:jgGp1UXf(4/5) AAS
サイコロを1回振ったときに各目が出る事象は
> uniform probabilityではない!
とスレ主は言ってたが、これは訂正しないのか?w

312 名前:132人目の素数さん[age] 投稿日:2017/11/18(土) 19:03:50.75
>>283
> >>250
> >  要は、x0を1回のみ試行するなら、”uniform probability”ではない!
> >  だから、[ 0,1 ]を全部”均等”に実施するのだ!と(もし、別の解釈が可能なら仰ってください)
>
> それ言ったらお前さんサイコロ振れないぞ。。。

スレ主の
「1回の試行ではダメだ。全部均等に実施しないとuniform probabilityとは言えない」
が面白かったので再度コピってage
512: 2017/11/23(木)12:32 ID:jgGp1UXf(5/5) AAS
>>501-503
> For a fixed true scenario, if one randomly selects an instant t in the interval [0,1] (or in R, under a suitable probability distribution),
> then Corollary 3.4 does tell us that the μ-strategy will be correct at t with probability 1.
> However, if one fixes the instant t, and randomly selects a true scenario, then the probability that the μ-strategy is correct at t under
> that scenario might be 0 or might not even exist, depending on how one defines the notion of a random scenario.

この文章を読めば分かるように、何が確率変数で何が固定されているのかを把握することが肝である
そんなことはずっと前(>>505)から伝えているにもかかわらず、
スレ主は「固定は未定義」などとアホな難癖をつけてゴネていたのであるw

お前は「fix」は理解したのか?
未だ理解せずに>>501-503を引用しているのか?
お前が引用した>>501-503にはfixが何度も使われているぞ?w

「fix」を理解していないなら 理 解 し て い な い と言え。
理解したなら未定義と難癖をつけたことを詫びなさいよ大馬鹿者

-----
94 名前:現代数学の系譜 古典ガロア理論を読む[sage] 投稿日:2017/08/19(土) 13:32:29.25 ID:du7mecbW [13/34]

”集合 R^N からその元 s を一つ取り出すことを「s∈R^N を fix する」や「s∈R^N を固定する」などと言う”(下記前スレより)

1.∀s∈R^N or ∃s∈R^N どちらか? ということだね(^^
2.”(1)FixされたR^Nに対して99/100が成り立つ からと言って (2)確率的に選ばれるR^Nに対して99/100が成り立つ は言えない、ということ。”(下記過去スレより)を説明する定義になっているのかな?
3.上記2の補足:”固定”とか”Fix”で、非可測集合が可測集合に変化すると言っているように見えるけど? どういうことなのかな? 無条件でそれが言えるなら、新説だろうね(^^
4.”結局のところ、固定されたいかなるsでもν(s)≧99/100と言える”(下記過去スレより)って、”固定”の定義なしで数学の証明したんだね?(^^
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.041s