[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む46 (692レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
429: 2017/11/21(火)04:16 ID:cl7UYlaS(1/20) AAS
おっちゃんです。
あれ???
計算間違いしていた。
430(3): 2017/11/21(火)04:23 ID:cl7UYlaS(2/20) AAS
正整数nと、超越数 a∈I=(0,1) とを任意に取る。
任意の既約な有理数 x=p/q∈(0,1) に対して f(p/q)=p/q、 任意の無理数 x∈(0,1) に対して f(x)=a
というようにして区間 I=(0,1) で定義された実関数 f(x) を考える。
J={ p/q∈I | |f(a)−f(b)|=|a−p/q)|<1/q^n, (p,q は互いに素) } とおく。
既約有理数 b=p/q∈J を任意に取ると、p/q に対して或る正整数mが存在して、
1=|( f(a)−f(b) )/(a−b)|<1/(q^n|a−p/q|)<m で、1/(m・q^n)<|a−p/q|<1/q^n となる。
また、p/q の分母qと分子pについて q>p≧1 で、Jは可算無限集合だから、
Jの既約有理数 p/q についての分母qに上限は存在しないと同時に下限が存在する。
従って、或る正整数 q≧2 が存在して、k≧q のとき、任意の k>p≧1 なる高々有限個の
既約有理数 p/k∈J に対して 1/k^{n+1}<|a−p/k|<1/k^n となる。
故に、任意の正整数nと超越数 a∈I=(0,1) とに対して、或る正整数 q≧2 が存在して、
k≧q のとき、任意の k>p≧1 なる高々有限個の既約有理数 p/k∈J に対して 1/k^{n+1}<|a−p/k|<1/k^n となる。
故に、任意の正整数nと超越数 a∈I=(0,1) とに対して、可算無限個の既約有理数 p/q∈J に対して 1/q^{n+1}<|a−p/q|<1/q^n。
431(2): 2017/11/21(火)04:26 ID:cl7UYlaS(3/20) AAS
(>>430の続き)
逆に、任意の正整数nに対して、可算無限個の既約有理数 p/q∈I=(0,1) q>p≧1 に対して 1/q^{n+1}<|a−p/q|<1/q^n とする。
このとき、a∈I=(0,1) が実代数的数とする。aの最小多項式の次数をnとする。
|a−p/q|≦1/q^{n+1}<1/q^n なる既約有理数 p/q∈(0,1) (q>p≧1) は高々有限個存在するから、
|a−p/q|≧1/q^n なる既約有理数 p/q∈I=(0,1) (q>p≧1) は可算無限個存在する。
従って、|a−p/q|<1/q^n≦|a−p/q| なる既約有理数 p/q∈I=(0,1) (q>p≧1) が存在して矛盾する。
背理法が適用出来るから、任意の正整数nに対して、可算無限個の既約有理数 p/q∈I=(0,1) q>p≧1 に対して
1/q^{n+1}<|a−p/q|<1/q^n なる実数 a∈I=(0,1) は超越数となる。
故に J⊂I から、実数 a∈I=(0,1) について、aが超越数なるための必要十分は、任意の正整数nに対して
可算無限個の既約有理数 p/q∈I=(0,1) q>p≧1 に対して 1/q^{n+1}<|a−p/q|<1/q^n となることである。
だけどこれ、知られているよな。
432(2): 2017/11/21(火)04:49 ID:cl7UYlaS(4/20) AAS
あっ、a>0 のときは>>423に計算間違いはなかったか。
a<0 のときが計算間違いか。
まあ、昨日考えていたあの問題は考え直しだ。
435(1): 2017/11/21(火)05:37 ID:cl7UYlaS(5/20) AAS
>>433
>何で結論が
>
>>実数 a∈I=(0,1) について、aが超越数なるための必要十分は、任意の正整数nに対して
>>可算無限個の既約有理数 p/q∈I=(0,1) q>p≧1 に対して 1/q^{n+1}<|a−p/q|<1/q^n となることである。
>
>になってるんだよ。これでは「 実数 a 」に関する議論であって、
>f の不連続性とか微分可能性とかの話になってないじゃん。
昨日のレスを見直しているうちに思い付いたから書いただけ。
>>432に書いたように、fの微分可能性や不連続性の話は後でな。
436(1): 2017/11/21(火)05:51 ID:cl7UYlaS(6/20) AAS
>>434
あ〜、TeX という代物には記号ごとに打つべき記号列の決まりがあったり、
文字を整えるのに却って時間がかかることがあったりして、
覚えることがあって書くのに時間がかかることになって、面倒臭いことがあるんだよ。
美文書作成入門の最新版は分厚いね。
まあ、こっちは有名ジャーナルに投稿するつもりだし、慌ててする気はない。
慌てると却って怪我の本になる。
439: 2017/11/21(火)06:24 ID:cl7UYlaS(7/20) AAS
>>437
フーン、私も>>421のサイトを詳しく読んでおらずよく分からないが、
>区間 [0,1] において、xが有理数のとき不連続、xが無理数のとき微分可能
>となるような[0,1] で定義された関数 f(x)
自体が存在しなかった訳か。
441: 2017/11/21(火)06:34 ID:cl7UYlaS(8/20) AAS
>>438
>「 tex の勉強に苦戦していて全く進んでません」と言ってるようにしか見えないな。
>論文を書くと宣言してから数カ月たってるはずだが、まだスタートラインにも経ってないわけだ。
>本当にレベルの低いところを彷徨ってばかりだな。ガッカリだわーーーーーーー。
私には余り期待しなくてもよい。期待されると却ってストレスなどが溜まりかねない。
そもそも、するべきことは TeX の学習「だけ」ではなく、TeX の学習「ばかり」に時間を割く訳にもいかんだろ。
442(1): 2017/11/21(火)06:43 ID:cl7UYlaS(9/20) AAS
>>440
>おっちゃんに本当に必要なのは、「 tex の勉強」という漠然とした行為などではなく、
>さっさと投稿したい雑誌のサイトに行って投稿規定をくまなく読んで、
>テンプレートをダウンロードして いきなり実践的に論文を書き上げることである。
有名ジャーナルに投稿するには、論文の質の向上が必要だろ。
446(1): 2017/11/21(火)07:32 ID:cl7UYlaS(10/20) AAS
>>443
>>有名ジャーナルに投稿するには、論文の質の向上が必要だろ。
>
>日本語が読めないのかな?>>440にちゃんと書いてあるじゃん。
>>440の文章において論文の質について書いてあるとすれば、
>さっさと投稿したい雑誌のサイトに行って投稿規定をくまなく読んで、
>テンプレートをダウンロードして いきなり実践的に論文を書き上げることである。
の部分か或いは
>慌てちゃいけないのは その後の「推敲」と「投稿」だよ。
だろうが、ここをどう解釈したら質の問題について書かれていると読めるんだ?
448(1): 2017/11/21(火)07:56 ID:cl7UYlaS(11/20) AAS
>>447
>「推敲」とは質を上げる行為に他ならないからだ。
推敲時に、新しく加えることがあったりして、時間がかかることもあるんですけどね。
>質問:いくら何でも、今から1年後の 2018/11/21 までには、
>少なくとも1本は論文を書き上げてどこかの雑誌に投稿しているよな?
>YES か NO かで答えてくれ。
誠に勝手ながら独断で判断させて頂くが、このスレでの経験上、
Yes か No をはっきりさせるような類の質問をする人はスレ主ではないかと思われます。
スレ主がする質問のタイプにかなり似ている。もし外れたら失礼。
2018年のことは分からんな。
450(1): 2017/11/21(火)08:19 ID:cl7UYlaS(12/20) AAS
>>449
>だったら「論文を書く」なんて宣言しなければいいのに。
こんなところに誰かも分からず見えず声も聞こえぬ人が書いたような、具体性に欠けており
漫然としたこれからのその人の予定を真に受ける方がどうかしていると思うよ。
数学書を読んだことがある人は分かると思うが、数学書のシリーズモノでもよくあることだろ。
書籍に限らず数学というのはそういうモノだろ? 自分で書くのがどれだけ大変なことか。
452(1): 2017/11/21(火)08:26 ID:cl7UYlaS(13/20) AAS
>>451
私は自らが納得するまで投稿はしない。
まあ、論文を書くためのメモはシコシコしているけどな。
454(2): 2017/11/21(火)08:33 ID:cl7UYlaS(14/20) AAS
>>453
>どこを見ても問題外ですね。
問題外と捉えてよい。
どこの誰かも知らない人の論文を書くアドバイスは不要である。
アドバイスをしたいなら、せめて所属先などを明記すべきである。
456(2): 2017/11/21(火)08:42 ID:cl7UYlaS(15/20) AAS
>>454
どこの誰かも知らぬ人の論文を書くアドバイスは一切不要である。
アドバイスをしたいなら、せめて所属先などを明記すべきである。
お前さんが院生であったり博士号取得者はあるけど…という可能性もある。
所属先などは書かないと、信憑性に欠けた内容になりかねない。
457(1): 2017/11/21(火)08:44 ID:cl7UYlaS(16/20) AAS
>>455
失礼。
>>456は>>455宛て。
459(1): 2017/11/21(火)08:57 ID:cl7UYlaS(17/20) AAS
>>458
>たぶん10年たっても1本も論文書いてないと思うよ。本当に問題外なんだわ。
そもそも、各個人や世間、自然などにおける10年後のことは誰にも分からんし、
10年後のことを心配するのは杞憂だと思うよ。
私も含めて、お前さんが10年後生きているかどうかも分からない。
461(1): 2017/11/21(火)09:49 ID:cl7UYlaS(18/20) AAS
>>453
>数学書と論文では分量が違いすぎるww
そうそう、書き易さでは数学書の方が論文より書き易いだろうな。
数学書を書くときも論文などを読むことはしばしばあるが、
特にこれといった何らかの新規性や新しいアイディアは余りいらない。
これに対して、論文を書くときは何らかの新規性や新しいアイディアなどは欠かせず、論文を読むことが非常に多いだろうしな。
>>460
>「10年後は私やあなたが生きてるかどうかさえ分からない」なんていう発想はできるのに、
>「いま生きてる この瞬間から早いうちに行動を起こさなければ」といった危機感は無いんですね。
>1年後の 2018/11/21 の時点で論文が1本 書きあがってるかどうかの目途すら立たないんですね。
10年後のことを書いた文章に何らかの意味付け或いはその文章の正当化をしてから
1年後のことに何らかの意味付けや期待をしようとする考え方は、手順前後で意味がない。
1年後のことを書いた文章に何らかの意味付け或いはその文章の正当化、期待を抱くことなどをしてから
10年後のことに何らかの意味付けをしようとしたりする考え方の方に、意味が生じる。
463(2): 2017/11/21(火)10:34 ID:cl7UYlaS(19/20) AAS
>>462
では参考までに1つ伺うが、一流ジャーナルのアクセプト率は何%位で、
一流ジャーナルへの掲載までにかかる時間はどの位になるのか?
まあ、はじめからそうしようとすると、数年以上はかかるだろうな。
465(1): 2017/11/21(火)11:07 ID:cl7UYlaS(20/20) AAS
>>464
なるほど、一応参考になった。
TeX や LaTeX でテキトーに草案を書くという方針でよい訳か。
まあ、英語に不慣れなんだが、自分の将来のこともあるし書き始めてみるわ。
将来の成り行きは分からんけどな。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 1.732s*