[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む46 (692レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
246
(1): 2017/11/18(土)08:29 ID:ZcXWWwZM(1/23) AAS
>>220 訂正
誤 スレ主はごまかし論理を見逃さない
正 スレ主は自分が理解できないとごまかし論理だと発狂する

誤 非論理的な落ちこぼれ素人衆が相手で、話がなかなか終わらない
正 自分が間違ってるという結論では、話を絶対終わらせたくない

誤 そもそも書かれた証明が正しいかどうかは、落ちこぼれ素人衆に分るわけがない(^^
正 そもそも俺様が理解できない証明を、他人が理解できるなんて決して認めたくない(T_T)
247
(1): 2017/11/18(土)08:37 ID:ZcXWWwZM(2/23) AAS
>>67
>fを選ぶ(関数空間の中から)
>x0を選ぶ(選び方はどうでもいいよ)
>x≠x0以外のf(x)を開示(この時点でf(x0)のみが確率変数)

ハイ間違いw
fもx0も決めてしまったなら、f(x0)も決まってしまう

確率を求めるというなら、fかx0かのいずれかを確率変数とせねばならない
ぷふっちの、「x=0と固定してよい」は明らかにf(正確には全てのxについてのf(x))
が確率変数だとするもの

一方、XOR’S HAMMERのHere’s a puzzleにおける確率計算は、
fを固定した上で、xを確率変数とするもの

もとの関数fと同値類の代表元f’が有限個の点でしか異ならない時点で
xを選んでf(x)=f’(x)とならない場合は確率0
ただそれだけのこと わからんヤツは数学を理解できない馬鹿
248
(3): 2017/11/18(土)09:13 ID:ZcXWWwZM(3/23) AAS
>>220
>x≠x0以外のf(x)を開示した時点で他のf(x)は確率変数でなくなる

この世で生きてるのはボクちゃんだけ、とか思ってる独我論者かいw

無数の人がそれぞれ勝手にxを選んだとしよう
で、その中でnot(f(x)=f'(x))となるハズレxを引く人はまずいない
ってことだよ

自分が何回もやるんならそりゃ同じfは使えないから変えるしかない
そういうことに無意識なのが馬鹿
263
(1): 2017/11/18(土)14:42 ID:ZcXWWwZM(4/23) AAS
>>250
”uniform probability”だから、確率変数はxだとわかるんですがね

ついでにいうと、私の書き込みが、
あるときはピエロ、またあるときはHigh level people
と判定されますが・・・
結論からいえば、同じIPから書いてるので、
IP情報が見られる人なら違う判断になることはない筈
です

つまりあなたは管理人の権限を有しないと判断されます
265: 2017/11/18(土)14:44 ID:ZcXWWwZM(5/23) AAS
>すでにxは選んでるんですけど

選ぶのはxでしょ?だからxが確率変数ですよ

>そしてf(x)=g(x)である確率は1なのですよ

xについての一様測度に基づいた確率で1、ということですよ

数学科の学生なら即座にわかります
うそだと思うなら数学科の学生に聞いてごらんなさい
10人いれば9人はそう答えます
あとの1人? まあ中には落ちこぼれもいますからね
267
(6): 2017/11/18(土)14:52 ID:ZcXWWwZM(6/23) AAS
>>258
>もし、一回の試行なら、”uniform probability”にならないこと、分りますか?(^^

君、何が問題か分かってないだろ?

まず
「[ 0,1 ]の0から初めて1に達するまで」
とかいう実数の順序に従った試行条件は必要ない
(そもそも実行不可能だが)

さらに単に[ 0,1 ]から点を選ぶというだけでは
”uniform probability”でない選び方もできる
選び方の指定として”uniform probability”と述べている

大学三年で確率論を学んだ人なら
一様確率分布は知っていて当然なんだがね
268
(2): 2017/11/18(土)15:05 ID:ZcXWWwZM(7/23) AAS
XOR’S HAMMERでも箱入り無数目でも
関数f:[0,1]→Rや、数列s:N→Rは
確率変数ではない
(確率変数だと思い込むと間違う)

XOR’S HAMMERでは、選んだ点x∈[0,1]が確率変数だし
箱入り無数目では、選んだ列の番号i∈{1,・・・,100}が確率変数となる

後者についてはHigh Level Person氏が初めから主張していた
(おそらく一人と思われるので”Person”とした)
ピエロ氏はsを確率変数としても正当化できると主張していたが
その場合積分の順序交換に関する新公理を導入せざるを得ない
ことに気づいてこの主張を放棄したようだ

今回、fを確率変数とした場合の正当化に
いかほど強力な新公理が必要となるのか不明だが
そもそもXOR’S HAMMER氏の主張とは異なるので
考慮する必要はない
(数学的興味から考えるのは随意であるが、素人には無理
 ちなみに確率論の問題ではなく集合論の問題)
269
(2): 2017/11/18(土)15:09 ID:ZcXWWwZM(8/23) AAS
箱入り無数目も、別にわざわざ100列にわけずに
列の勝手な箱を選ぶという形でもよかった筈だが
そうしなかったのは、可算無限集合上の測度では
有限加法性しか保証できないので、一般的でない
と考えたのだろう
  
278
(5): 2017/11/18(土)16:10 ID:ZcXWWwZM(9/23) AAS
>>267 ID:ZcXWWwZM
>(そもそも(実数の順序に従った試行は)実行不可能だが)

>>273 ID:EemFP5PJ
>可能だ。x_tとして、添え字tを、0→1に変化させるべし!(^^

>>276 ID:SxRpMzIL
>じゃあ最初に0を選んで、その次に選ぶ実数の値を答えて下さい

そりゃそう突っ込むよなw

実数の順序は全順序だけど整列順序じゃないから
自然数みたいに0の次は1、とはいかない

"連続的試行"なんて確率論では正当化できませんよ
実数集合上の測度は"連続的試行"の正当化ではありません
279
(3): 2017/11/18(土)16:14 ID:ZcXWWwZM(10/23) AAS
>>273
>だから、それ(uniform probability)を数学的に表現したらどうなるんだ
>(どういう定義だ)と、聞いているのだよ!(^^

ここに書いてあるけどw
外部リンク:ja.wikipedia.org

[0,1]の場合、密度関数は[0,1]での定数関数1ね([0,1]以外では0)

ほんと語れば語るほど基本的な知識が欠如してるのがバレてくね
工学部の確率論って一体何教えてんの?
280
(1): 2017/11/18(土)16:15 ID:ZcXWWwZM(11/23) AAS
>>274
>「ぷふ」さんが優先権あり
間違った方向の優先権を求める馬鹿がいるのか?w
295
(3): 2017/11/18(土)18:38 ID:ZcXWWwZM(12/23) AAS
>>285
>数学的には、二つに分けないといけない

また>>1の「俺が数学だ」が始まったなw

>1)実変数xを取ることの"連続的試行"の可否?
>(あなたは、実数は”全順序だけど整列順序じゃない”だから不可という)

「実数の順序に従って」といったのは君。だからできないといった。
実数の集合に対して、実数の大小の順序とは異なる整列順序を与えて
その整列順序に従って実行することは可能だが、そうしたところで
そこから確率が求まるかどうかは別の問題

>2)測度論的に、"連続的試行"をどう扱うか?

測度論では、>>1の単純素朴な"連続的試行"なんて扱わない
298
(2): 2017/11/18(土)18:44 ID:ZcXWWwZM(13/23) AAS
>>289
>ああ、 ID:ZcXWWwZM は、ピエロか(^^

>>1は「馬鹿」という言葉を用いるとピエロと判定するらしい
昆虫の判断基準は呆れるほど単純だw
300: 2017/11/18(土)18:47 ID:ZcXWWwZM(14/23) AAS
>>287
>どうやって、”uniform probability”を検証しますか?

落ちこぼれは「無関係な問い」を発する傾向がある
この問いがそのいい例だ
302
(1): 2017/11/18(土)18:51 ID:ZcXWWwZM(15/23) AAS
>>299
>>実数の順序は全順序だけど整列順序じゃないから
>全順序の定義を再確認乞う
全順序
外部リンク:ja.wikipedia.org
整列順序
外部リンク:ja.wikipedia.org
305
(3): 2017/11/18(土)18:54 ID:ZcXWWwZM(16/23) AAS
>>299
>>測度論では、>>1の単純素朴な"連続的試行"なんて扱わない
>今一度、確率論の本を開いてみたら? 

では伊藤清「確率論」(岩波基礎数学選書) の何pに書かれてますか
当該箇所を引用してお示しください

できないでしょう?だって、書いてないものw
307
(1): 2017/11/18(土)18:57 ID:ZcXWWwZM(17/23) AAS
>>306
そもそも確率論の本を一冊も持ってない>>1が
他人に確率論の本を読めというのは、
>>1が自己中心的なサイコパスだから
308
(1): 2017/11/18(土)18:59 ID:ZcXWWwZM(18/23) AAS
ということでこれから>>1を”サイコ”と呼ぶことにしたい
310: 2017/11/18(土)19:01 ID:ZcXWWwZM(19/23) AAS
サイコ>>1の特徴
・慢性的に平然と嘘をつく
・自尊心が過大で自己中心的
・口が達者で表面は魅力的
311
(1): 2017/11/18(土)19:03 ID:ZcXWWwZM(20/23) AAS
>>309
そもそも大学の工学部を出たというのも嘘だと思う
工学部の学生でも知ってるようなことを知らないから
せいぜい高専卒だな
313: 2017/11/18(土)19:06 ID:ZcXWWwZM(21/23) AAS
サイコは学歴に対する強烈な劣等感があるから
大卒とか院卒とか平気で嘘をつく
いまどき工学部の学生だって教養課程の数学くらい知ってるが
サイコは実数の定義すらロクに知らない
大学1年の4月に必ず習うことなのに
315
(1): 2017/11/18(土)19:12 ID:ZcXWWwZM(22/23) AAS
>>312
>全部均等に実施しないとuniform probabilityとは言えない

高校の「自称秀才」がまっさきに躓く「俺様定義」の石だな

>そういう人とは違う目線を全否定しちゃ人生つまらないもんね。

否定以前に肯定しようがない
そもそも全ての実数について1回ずつ実施したとして
それだけのことからどうやって確率を計算するつもりか
「確率論の本を読め」という人が確率論の本に必ず書かれてる
測度をまったく度外視してる時点でサイコはハッタリ野郎だと分かる
316: 2017/11/18(土)19:15 ID:ZcXWWwZM(23/23) AAS
>>314
>> せいぜい高専卒だな
>率直に言って高専を馬鹿にする君もひどいと思われ

馬鹿にはしていないよ
単に必要な教育を受けてないという意味で述べた
idiotというのも本来そういう意味
発達障害の程度を表わすものではない
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.035s