[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む46 (692レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
243(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)07:11 ID:EemFP5PJ(1/34) AAS
>>231 補足
下記、確率論I, 確率論概論I 原隆 九州大学 より、キーワード”固定”の箇所抜粋
まあ、確かに、確率論で、キーワード”固定”を使っておりますが(^^
それ、きちんと数学的な効果を検証しながら、ステップを踏んで、使っている
貴方のように、むやみやたらと、自分勝手に、ご都合よく、”固定”を使って、「先生、証明できました!」というのは、如何なものか?(^^
それは、数学ではなく、似非数学では?
外部リンク[pdf]:www2.math.kyushu-u.ac.jp
確率論I, 確率論概論I 原隆 九州大学
(抜粋)
P20
註2.3.2 概収束と確率収束の定義が少しわかりにくいかも知れないので,補足しておく.
概収束の場合,確率空間の元ω を一つ固定し,この固定したω 毎に極限lim n→∞ Xn(ω) を考えて,
これがX(ω) に等しいか否かを問題にしている(等しくない確率がゼロ,つまり,等しくないよう
なω が無視できるほど少ないなら良い).
一方,確率収束の場合は,各n 毎に|Xn(ω)?X(ω)| > ε である確率を問題にしている.
つまり, |Xn(ω) ? X(ω)| > ε となるようなω は, n 毎に異なっても,とにかくその確率がゼロに行
けば良い.
(引用終り)
244: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)07:50 ID:EemFP5PJ(2/34) AAS
>>242
その発言で「猿の惑星」(下記)を思い出したよ(^^
ところで、下記スレ33の発言No233は、あなたでしょ
”ID:PqWMwFYK君”は、数学科の人らしかった。が、あなたの”固定”暴論に、「話にならん」と逃げ出したと私は見ていますよ〜(^^
外部リンク:ja.wikipedia.org 猿の惑星シリーズ
(抜粋)物語では、進化した猿が支配する惑星が登場し、人間は知能のない動物として猿に狩られ奴隷とされる。(引用終り)
スレ33 2chスレ:math
(抜粋)
223 名前:132人目の素数さん[sage] 投稿日:2017/05/28(日) 19:00:53.06 ID:q2oArHoC [12/14]
おいID:PqWMwFYK君。俺のことを
>>200
> 頭のおかしい人
呼ばわりしたID:PqWMwFYK君。
俺の言うことが理解できたのか?
無礼な君に懇切丁寧に例(>>215)まで出してやったんだ。
「おかげさまで理解しました」ぐらいの返答があってもいいだろう?
あるいはまだ理解できないなら正直に言いなさい。
俺はお前のことを「有限確率空間すら分からない頭のおかしい人」と呼んだりはしない。
お前の無礼な発言については一言詫びがあっても良さそうなものだ。
俺は無礼な人間とは話したくもない(>>189)という気持ちをじっと抑え込んで
懇切丁寧にお前に付き合ってやったのだからな。
(引用終り)
245(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)08:03 ID:EemFP5PJ(3/34) AAS
>>240-241 補足の補足の補足
”Bob reveals”の情報は、いずれにせよ使わざるを得ない
1.(>>233の)正攻法で、事前に全ての関数を類別して、代表を決めておく場合
”Bob reveals”の情報は、同値類を特定するために必須
つまり、同値類を特定するために必須の情報として、Bobの関数fについてほとんど全ての情報を必要とする
2.一方、(>>233の)手抜き法の場合でも、上記と同じだけの情報を必要とする(^^
これが、>>48の”The strategy”の数学的パズルの種明かし(^^
249(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)10:08 ID:EemFP5PJ(4/34) AAS
>>58
哀れな素人さん、どうも。スレ主です。
>1/2+1/4+1/8+……は1にはならない。
ここに戻るが
輓近代数学の展望(下記)
の後ろの解説(P492)で、飯高茂先生が、下記解説を書いているのを見つけたよ(^^
無限小数で
「1.0000・・・=0.9999・・・
は定義なのである」と書かれている(^^
「さて、0.9999・・・はいつまでも1でない、と悩む人は多い。」
ともある
「それは数学的には正しいことではあるが、啓蒙書としてはやや不親切に過ぎよう。
読者がもし納得したいと思ったら、微積分の冒頭にある本格的な実数論を勉強する必要がある。」
とも
なので、1/2+1/4+1/8+……は、2進数展開で、0.1111・・・だから、これ上記で言えば「これは、いつまでも1でない」ということ
2進数展開で、0.1111・・・は、定義しないと、「1にはならない」ということだろうね(^^
外部リンク:www.amazon.co.jp
輓近代数学の展望 (ちくま学芸文庫) 文庫 ? 2009/12/9 秋月 康夫 (著)
250(24): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)10:59 ID:EemFP5PJ(5/34) AAS
>>247-248
これはこれは、粘着 High level peopleさん、いつも粘着ご苦労さまです(^^
「非論理的な落ちこぼれ素人衆が相手で、話がなかなか終わらない」が、正解じゃないですか〜(>>246)(^^
爆笑暴論珍説「素人固定論」か
一つずついきましょうか
1.(>>47より)外部リンク:xorshammer.com
SET THEORY AND WEATHER PREDICTION XOR’S HAMMER Some things in mathematical logic that I find interesting WRITTEN BY MKOCONNOR Blog at WordPress.com. AUGUST 23, 2008
(抜粋)
Here’s a puzzle:
1)Bob thinks of some function f: R → R (it’s arbitrary: it doesn’t have to be continuous or anything).
2)You pick an x ∈ R.
(引用終り)
だった
2.ところが、(>>48より)In Step 2, choose x with uniform probability from [ 0,1 ]. となって、”uniform probability”なる条件が、さりげなく入ってきた
3.”uniform probability”なる条件が、このパズルのキーワードの一つだ!
4.”uniform probability”をどう解釈するか? 一つの解釈として、過去スレで、下記を書いた。
要は、x0を1回のみ試行するなら、”uniform probability”ではない!
だから、[ 0,1 ]を全部”均等”に実施するのだ!と(もし、別の解釈が可能なら仰ってください)
つづく
251(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)11:00 ID:EemFP5PJ(6/34) AAS
>>250 つづき
<引用>
スレ45 2chスレ:math
(抜粋)
”choose x in Step 2 with uniform probability from [ 0,1 ]”だから、 Gameを、[ 0,1 ]の0から初めて1に達するまで、続ける
x=0のときに、Bobのf(x)が分って、同値類が分って、代表f'(x)が決まる。あとを続ければ、Δf = f(x)−f'(x) は、”定義の通り” [ 0,1 ]では有限個しか不一致がないんだ
それだけのこと。つまり、x=0のときに、代表f'(x)が決まるから、あとはどこで有限個が外れるか、その時点で全て分るわけさ!! (^^
これだと、関数の数当てとしては、完全にトリビアで、数学的に無価値だろ? (^^
(引用終り)
注:x=0を、あるx0∈[ 0,1 ] としてもよい。
5.これだと、「素人固定論」は不要ですよ。
6.あなたがハマルのは無理ないです。多くの人がハマってますから。(^^
以上
252(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)11:05 ID:EemFP5PJ(7/34) AAS
>>251 補足
(>>248より)
>自分が何回もやるんならそりゃ同じfは使えないから変えるしかない
これは、上記 >>251
「 ”choose x in Step 2 with uniform probability from [ 0,1 ]”だから、 Gameを、[ 0,1 ]の0から初めて1に達するまで、続ける」ですよ(^^
254: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)11:47 ID:EemFP5PJ(8/34) AAS
>>253
「ぷふ」さん、どうも。スレ主です。
ご健在でなによりです。(^^
「非論理的な落ちこぼれ素人衆が相手で、話がなかなか終わらない」(>>220)ですが(^^
気長にお付き合いをよろしくお願いします。m(_ _)m
258(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)13:53 ID:EemFP5PJ(9/34) AAS
>>255
訳じゃなく、数学的解釈だよ
”choose x in Step 2 with uniform probability from [ 0,1 ]”
もし、一回の試行なら、”uniform probability”にならないこと、分りますか?(^^
259(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)13:57 ID:EemFP5PJ(10/34) AAS
>>256-257
はいはい、High level peopleさん、頑張ってね(^^
一時は、”成りすまし”とか、そちらに救いを求めていたようですね〜。残念でしたね〜!(^^
262(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)14:26 ID:EemFP5PJ(11/34) AAS
>>261
で、あなたの数学的解釈は、如何か?
回答次第では(回答不能ないし、バカ回答で)、「スレ主>>>ID:SxRpMzILが、決定!!」 だな(^^
271(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)15:14 ID:EemFP5PJ(12/34) AAS
>>264
話にならないほどアホですね
せめて、>>267-268程度は書かないと・・・、
「スレ主>>>ID:SxRpMzILが、決定!!」 だな(^^
272: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)15:16 ID:EemFP5PJ(13/34) AAS
>>263
>つまりあなたは管理人の権限を有しないと判断されます
いまさら、なにを(^^
5CH(元2CH)素人だね(^^
273(6): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)15:25 ID:EemFP5PJ(14/34) AAS
>>267
>とかいう実数の順序に従った試行条件は必要ない
必要ないが、順序を乱す必然性もない
>(そもそも実行不可能だが)
可能だ。x_tとして、添え字tを、0→1に変化させるべし!(^^
>選び方の指定として”uniform probability”と述べている
だから、それを数学的に表現したらどうなるんだ(どういう定義だ)と、聞いているのだよ!(^^
その定義と、「[ 0,1 ]の0から初めて1に達するまで」(積分(ここの議論は過去スレにあるが))とは等価だろ?
274(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)15:25 ID:EemFP5PJ(15/34) AAS
>>268-269
そこらの独り言は、「ぷふ」さんが優先権ありだな(^^
281: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)17:46 ID:EemFP5PJ(16/34) AAS
>>280
ありゃ、独り言じゃなかったのかい?(^^
てっきり、”「ぷふ」さんに相手をしてもらいたかったのだろう”と思ったのだが?(^^
282: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)17:47 ID:EemFP5PJ(17/34) AAS
まあ、”ぷ”とかさ(^^
284(5): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)17:48 ID:EemFP5PJ(18/34) AAS
>>279
いや、聞いていることは、
1)”choose x in Step 2 with uniform probability from [ 0,1 ]”を、貴方はどうやってそれを実行するのか?
2)実行された、試行が、実際に”choose x in Step 2 with uniform probability from [ 0,1 ]”であることをどうやって検証(立証)するのか
この2点から、その引用した定義を、現実の問題(>>273)にどう当てはめるのか?
まあ、これは応用問題ですよ。定義を、検索して引用するだけなら、だれでもできる
だが、それを、現実の問題に当てはめるには
応用力を必要とするってことですよ〜(^^
285(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)17:48 ID:EemFP5PJ(19/34) AAS
>>278
さすが、良いフォローだな(^^
ID:SxRpMzILさん、おそらく文系だろう(不適切なつっこみだからね)(^^
>実数の順序は全順序だけど整列順序じゃないから
この文自身は正しいが、いまこれ(”全順序だけど整列順序じゃない”)を述べることは不適切だな
分りますか?
>"連続的試行"なんて確率論では正当化できませんよ
>実数集合上の測度は"連続的試行"の正当化ではありません
ここは、数学的には、二つに分けないといけない
1)実変数xを取ることの"連続的試行"の可否?(あなたは、実数は”全順序だけど整列順序じゃない”だから不可という)
2)測度論的に、"連続的試行"をどう扱うか?
以上、あなたに反省の機会を与えるよ(^^
287(5): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)17:55 ID:EemFP5PJ(20/34) AAS
>>283
>それ言ったらお前さんサイコロ振れないぞ。。。
良い指摘だ(^^
予想回答の一つだ(^^
では、私が、1回の試行で、[0,1]のある数、例えば、0.5を選んだとする。これは、”uniform probability”ですかね?
では、私が、4回の試行で、例えば、0と1/3と2/3と1とを選んだとする。これは、”uniform probability”ですかね?
どうやって、”uniform probability”を検証しますか?(>>284)
288(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)17:57 ID:EemFP5PJ(21/34) AAS
>>286
ああ、その通り
スレ主さんは確率論に滅法よわいので
どうぞ、答えを述べたらどうですか?
そうすると、スレ主>>> ID:LAjmabkB
がはっきりするでしょうね(^^
289(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)18:04 ID:EemFP5PJ(22/34) AAS
>>278
ああ、 ID:ZcXWWwZM は、ピエロか(^^
結構、サイコパスのピエロは細かい間違いを犯すね〜(>>285)(^^
292(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)18:29 ID:EemFP5PJ(23/34) AAS
>>290
そうそう、良い回答だな(^^
それも想定回答の一つかな?(^^
>>279の定義 ”[0,1]の場合、密度関数は[0,1]での定数関数1ね([0,1]以外では0)”を、具体的試行と結び付けなければ、定義はお経にすぎない
293(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)18:34 ID:EemFP5PJ(24/34) AAS
>>291
High level peopleにも達しない文系さん、ご苦労です(^^
>>278で、ピエロのフォローで救ってもらったことが、あなた理解できていませんね(^^
これあとで、説明する機会があると思いますよ(^^
297(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)18:40 ID:EemFP5PJ(25/34) AAS
>>294
「俺」さんね。
と言われても、「はて?」だが(^^
>>290 には、>>292を返したよ(^^
299(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)18:47 ID:EemFP5PJ(26/34) AAS
>>295
ピエロくん、ご苦労(^^
小学生なのに、今日は、作文たくさん頑張ったね(^^
>実数の順序は全順序だけど整列順序じゃないから
全順序の定義を再確認乞う
>実数の集合に対して、実数の大小の順序とは異なる整列順序を与えて
いまは、実数の集合かい?
>測度論では、>>1の単純素朴な"連続的試行"なんて扱わない
今一度、確率論の本を開いてみたら?
ああ、すまん、ピエロは、確率論の本読めなかったんだね〜(^^
301: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)18:50 ID:EemFP5PJ(27/34) AAS
>>298
大丈夫だよ
すぐ”哀れな素人”さんが、「こいつは一石だ」と判定してくれるさ(^^
317: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)20:53 ID:EemFP5PJ(28/34) AAS
どうも。スレ主です。
みなさん、元気だね〜(^^
レスありがとうよ!
318(6): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)20:54 ID:EemFP5PJ(29/34) AAS
さて
>>302
どうも、ご苦労さん
OK! その通り
で、正解だが、まず下記超限帰納法も確認してくれ(^^
今の場合、実数R全体じゃない。区間[0,1]限定だからね。超限帰納法が適用できる整列集合として、区間[0,1]は採用可能だよね
次に、下記の「確率論I, 確率論概論I 原隆 九州大学」のP69
”定義4.1.1 実数のパラメータt で番号づけられた確率変数の集まり{Wt}t∈R を確率過程と言う”も、確認よろしくね
つまり、確率変数の添え字は、実数のパラメータt で番号づけ可能だ(^^
最後に、整列集合(wikipedia)の(抜粋)も確認頼む(^^
外部リンク:ja.wikipedia.org
(抜粋)
超限帰納法
上記の形で自然数について定式化された数学的帰納法は、任意の整列集合に対して次のように一般化することができる。
この一般化を超限帰納法 (ちょうげんきのうほう、英: transfinite induction)という。任意濃度の集合は選択公理と同値な整列可能定理により整列順序を持つとすることができるので、選択公理を含む公理系であれば超限帰納法は任意濃度の集合に対して成立すると主張できる。
(引用終り)
(>>243より)
外部リンク[pdf]:www2.math.kyushu-u.ac.jp
確率論I, 確率論概論I 原隆 九州大学
(抜粋)
P69
4.1.2 確率過程とそのpaths
定義4.1.1 実数のパラメータt で番号づけられた確率変数の集まり{Wt}t∈R を確率過程と言う.
実数のバラメータt が整数値(やその一部分)のみをとる場合も確率過程と言う.確率変数自身
は実数値をとる場合を考えることが多いが,もっと一般の空間の値をとっても良い.
(引用終り)
319(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)20:55 ID:EemFP5PJ(30/34) AAS
>>318 つづき
外部リンク:ja.wikipedia.org
整列集合
(抜粋)
実数からなる集合
選択公理を含む集合論の ZFC 公理系からは、実数全体の成す集合 R 上の整列順序が存在することが示せる。
R 上の定義可能な整列順序の存在は ZFC と(相対的に)無矛盾である。
同値な定式化
順序集合 X が全順序集合である場合には、以下の条件はどれも互いに同値である。
1)X は整列集合である。つまり、空でない任意の部分集合が最小元を持つ。
2)X の全体で超限帰納法が有効である。
3)X の元からなる任意の狭義単調減少列は必ず有限な長さで停止する(ただし、従属選択公理を仮定する)。
(引用終り)
以上
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.046s