[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む46 (692レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む46 http://rio2016.5ch.net/test/read.cgi/math/1510442940/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
167: 132人目の素数さん [sage] 2017/11/14(火) 21:03:59.78 ID:v/i8VeKy >>157 > >>156 > 定義の定義を述べよ こういうウケないことを言うID:xUezoIEB=ぷ君w http://rio2016.5ch.net/test/read.cgi/math/1510442940/167
181: 132人目の素数さん [sage] 2017/11/15(水) 19:42:29.78 ID:fz0TcIh0 >>174 >要は、1/q^v でvの臨界指数で類別する。それはおれも考えていた 無理するな >数学的にはどこか臨界指数があるだろう 微分可能な点が出てくるところを臨界といってるなら、2を超えた瞬間 ところで貴様は英語が読めないみたいだから教えてやるが 任意のnで、微分不可能な無理数は存在する さらにいえば、1/q^nを1/e^(-q)に置き換えても リュービル数では微分不可能https://kbeanland.files.wordpress.com/2010/01/beanlandrobstevensonmonthly.pdf http://rio2016.5ch.net/test/read.cgi/math/1510442940/181
203: 132人目の素数さん [sage] 2017/11/16(木) 13:53:40.78 ID:/MLxWF5k >>200 補足 http://www.unirioja.es/cu/jvarona/downloads/Differentiability-DA-Roth.pdf DIFFERENTIABILITY OF A PATHOLOGICAL FUNCTION, DIOPHANTINE APPROXIMATION, AND A REFORMULATION OF THE THUE-SIEGEL-ROTH THEOREM 2009 抜粋引用 In the opinion of this author, fν is a very interesting function, and it is worthwhile to continue analyzing its behaviour. In this way, we find examples of functions whose properties about con- tinuity and dierentiability are pathological at the same time. For every ν > 0, the function fν is continuous at the irrationals and discontinuous at the rationals. And, when ν > 2 (that is the most interesting case), we prove that fν is dierentiable in a set Dν It is astonishing that, dierentiability being a local concept, fν is dieren- tiable almost everywhere in spite of the fact that it is not continuous at any rational number. We finish the paper by showing a reformulation of the Thue-Siegel-Roth theorem in terms of the dierentiability of fν for ν > 2 (see Theorem 3 and the final Remark). It seems really surprising that a theorem about dio- phantine approximation is equivalent to another theorem about the dier- entiablity of a real function: a nice new connection between number theory and analysis! As far as I know, this characterization of the Thue-Siegel-Roth theorem has not been previously observed. Remark 1. The pathological behavior of functions is a useful source of examples that help to understand the rigorous definitions of the basic con- cepts in mathematical analysis. In this respect, it is interesting to note that, here, we have shown a kind of pathological behaviour that is dierent from that of the more commonly studied: the existence of continuous nowhere dierentiable real functions, whose most typical example is the Weierstrass function 4. The theorem of Thue-Siegel-Roth revisited http://rio2016.5ch.net/test/read.cgi/math/1510442940/203
327: 132人目の素数さん [] 2017/11/19(日) 03:44:12.78 ID:1qHHV2xH もとの箱入り無数目の方だと 開陳しない状況で 最小である確率は確かに99/100 しかし 他の選択肢を開陳した時点で それらの最大値が確定するから それよりも小さい確率は0になるんだな http://rio2016.5ch.net/test/read.cgi/math/1510442940/327
596: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/11/26(日) 23:26:10.78 ID:1WQ1V5QH >>575 補足 原本PDFを見て貰った方が視認性は良いが、後の検索性のためにコピペする(^^ http://www.unirioja.es/cu/jvarona/downloads/Differentiability-DA-Roth.pdf DIFFERENTIABILITY OF A PATHOLOGICAL FUNCTION, DIOPHANTINE APPROXIMATION, AND A REFORMULATION OF THE THUE-SIEGEL-ROTH THEOREM JUAN LUIS VARONA 2009 (抜粋) P7 4. The theorem of Thue-Siegel-Roth revisited Or, equivalently, if x is an irrational algebraic number, there exists a positive constant C(x, α) such that |x - p/q |< C(x, α)/q^(2+α) (10) has no rational solution. P8 Remark 3. We have proved Theorem 3 by using the Thue-Siegel-Roth theorem. But we have said that it is a reformulation. So, let us see how to deduce the Thue-Siegel-Roth theorem from Theorem 3. Given x algebraic and irrational, and ν > 2, Theorem 3 ensures that fν is differentiable at x, so there exists lim y→x {fν(y) - fν(x)}/(y - x) = f’ν (x). By approximating y → x by irrationals y, it follows that f’ν (x) = 0. Consequently, by approximating y → x by rationals, i.e., y = p/q, we also must have lim p/q→x {fν(p/q) - fν(x)}/(p/q - x ) = lim p/q→x (1/qν)/(p/q - x) = 0. Then, for every ε > 0, there exists δ > 0 such that 1/(q^ν) <= ε|p/q - x| when p/q ∈ (x - δ, x + δ). From here, it is easy to check that the same happens for every p/q ∈ Q, perhaps with a greather constant ε' in the place of ε. Thus, (10) with α = ν-2 and some positive constant C(x, α) = 1/ε' has no rational solution, and we have obtained the Thue-Siegel-Roth theorem. (引用終り) つづく http://rio2016.5ch.net/test/read.cgi/math/1510442940/596
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.033s