[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む46 (692レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
127(1): 2017/11/12(日)22:22:31.77 ID:hePUuc7P(12/13) AAS
>>124-125
すみませんが質問にスパっと答えてもらえませんか?
[1]
代表元は元の問題通り、Step1で事前に作っておくんですか?
それとも>>108の『英文に書いてある』ように、Step3でf(x)を知ってからf'(x)を作るんですか?
>>108
> >>107
> >x=x0以外のf(x)を知った後、代表f'(x)を作ってから、f'(0)を数当ての答えにするわけ?w
>
> 英文では、そう書いてある
[2]
数当ては確率0で成功するんですか?確率1で成功するんですか?
どちらと考えているのですか?
156(3): 2017/11/14(火)19:02:16.77 ID:odeBuPNy(2/4) AAS
>>155
時間の定義を述べよ
503(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/23(木)09:28:25.77 ID:A258vGqh(3/13) AAS
<独り言>
1.”>>479-485を、切り札にする”と言っても、言うほど簡単じゃない。
分量的にも大変だ。中途半端だと、議論の錯綜に輪を掛けることになる。
だから、PDFを3つ読み込まないといけなかった。
>>481の”However, if one fixes the instant t, and randomly selects a true scenario, ・・・ at t under that scenario might be 0 or might not even exist, depending on how one defines the notion of a random scenario.”
には、早く気付いていたが、
他のPDFとの関連も確認する必要があった。
2.(文系) High level people たちの<数学ディベート>(もどき?)(>>8)は、全く面白くないんだよね。
自分達が、関連論文を読んで、紹介しようとしないから、話のレベルが全く上がらない。
3.その点、ピエロは、関連論文の検索能力はある。
例えば>>49のTaylor氏達のPDFとか、あるいは知っていたが重視していなかった”XOR’S HAMMERの任意関数の数当て解法”(>>56)を発掘したりとかは、大いに評価できる。
(一方、サイコパス性格なので、(自分のウソを信じるから)自分に甘く、厳格な数理論理の貫徹ができない。また、細かい点で間違いが多い。)
530(3): 2017/11/24(金)12:24:13.77 ID:oy9GryqM(1/3) AAS
おっちゃんです。
え〜、>>430-431には間違いがあります。正しくは次のようになる。
超越数 a∈R について、aがリウビル数であるための必要十分は、
任意の正整数nに対して、高々有限個の J(n,a) の両方共に或る (p,q)=1 なる正整数 p,q を用いて表された
有理数 p/q が 1/( q^{n+1} )<|a−p/q|<1/q^n を満たすことである。
(証明)、[第1段]:a∈I をリウビル数とする。正整数nを任意に取る。
有理数直線Qの部分空間 J(n,a) を J(n,a)={ p/q∈Q | |a−p/q|<1/q^n } と定義する。
正整数の大小関係から、(p,q)=1 なる正整数 p,q を用いて表された J(n,a) の既約分数 p/q の分母qについて、
qに上限は存在せず下限 c=inf_{ (p,q)=1, p/q∈J(n,a) }(q) が存在する。故に、J(n,a) は可算無限集合である。
両方共に或る (p,q)=1 なる正整数 p,q を用いて表された J(n,a) の既約分数 p/q を任意に取る。
すると、|a−p/q| は超越数で |a−p/q|>0 だから、J(n,a) の定義に注意すると、
p/q に対して或る正整数 m(p/q) が存在して、1/( m(p/q)・q^n )<|a−p/q|<1/q^n。従って、m(p/q)≧2。
J(n,a) の既約分数 p/q は任意であるから、既約分数 p/q を J(n,a) 上で走らせれば、
両方共に或る (p,q)=1 なる正整数 p,q を用いて表された或る有理数 p/q∈J(n,a) が存在し、
p/q に対して或る2以上の整数 m(p/q) が定まって、m=m(p/q) とおけば、
k≧m のとき、高々有限個の (p,k)=1 なる正整数 p,k を用いて表された
有理数 p/k∈J(n,a) は 1/(k・q^n)<|a−p/q|<1/q^n を満たす。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.045s