[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む46 (692レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
596(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/26(日)23:26 ID:1WQ1V5QH(31/34) AAS
>>575 補足
原本PDFを見て貰った方が視認性は良いが、後の検索性のためにコピペする(^^
外部リンク[pdf]:www.unirioja.es
DIFFERENTIABILITY OF A PATHOLOGICAL FUNCTION, DIOPHANTINE APPROXIMATION, AND A REFORMULATION OF THE THUE-SIEGEL-ROTH THEOREM JUAN LUIS VARONA 2009
(抜粋)
P7
4. The theorem of Thue-Siegel-Roth revisited
Or, equivalently, if x is an irrational algebraic number, there exists a positive constant C(x, α) such
that |x - p/q |< C(x, α)/q^(2+α) (10)
has no rational solution.
P8
Remark 3. We have proved Theorem 3 by using the Thue-Siegel-Roth theorem.
But we have said that it is a reformulation. So, let us see how to
deduce the Thue-Siegel-Roth theorem from Theorem 3.
Given x algebraic and irrational, and ν > 2, Theorem 3 ensures that fν
is differentiable at x, so there exists
lim y→x {fν(y) - fν(x)}/(y - x) = f’ν (x).
By approximating y → x by irrationals y, it follows that f’ν (x) = 0.
Consequently, by approximating y → x by rationals, i.e., y = p/q, we also must have
lim p/q→x {fν(p/q) - fν(x)}/(p/q - x ) = lim p/q→x (1/qν)/(p/q - x) = 0.
Then, for every ε > 0, there exists δ > 0 such that
1/(q^ν) <= ε|p/q - x|
when p/q ∈ (x - δ, x + δ). From here, it is easy to check that the same
happens for every p/q ∈ Q, perhaps with a greather constant ε' in the place
of ε. Thus, (10) with α = ν-2 and some positive constant C(x, α) = 1/ε' has
no rational solution, and we have obtained the Thue-Siegel-Roth theorem.
(引用終り)
つづく
上下前次1-新書関写板覧索設栞歴
あと 96 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.020s