[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む46 (692レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む46 http://rio2016.5ch.net/test/read.cgi/math/1510442940/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
593: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2017/11/26(日) 22:29:27.75 ID:1WQ1V5QH >>592 つづき P6 1.4 確率変数と期待値 今まで,確率空間とその上の事象のみを相手にしてきた.しかし,ランダムな確率変数に応じ てランダムに値の変わる関数を考えると,物事がよく見えることが多い.例えば,10000 個のサ イコロを同時に投げるときには,それぞれのサイコロがどのような目を出したかには余り興味が なく,むしろ「1 の目を出したサイコロは何個か」「出た目の合計はいくらか」などに興味のあ ることが普通であろう.この節では,そのようなランダムな変数について考える. 1.4.1 確率変数とは 確率空間(Ω,F, P)(可測空間(Ω,F) とその上の確率測度P)が与えられたとする.(Ω,F, P) 上の確率変数とは,大ざっぱには「その値が確率的に(ランダムに)変動する数」のこと.土台 になる確率空間を考えた上での確率変数だから,それぞれの値をとる確率は(原理的に)計算で きる.例えば, 例1.4.1: さいころを一回投げる場合,出た目の数をX とすると,X は1, 2, 3, 4, 5, 6 のどれ かをとる確率変数.P[X = i] = 1/6 と言うのが自然(i = 1, 2, 3, . . . , 6). 概念としては簡単なんだけど,これは実用上,なかなか有用である.そもそも確率変数は,以 下の「期待値」や「分散」などを通して,対象とする確率モデルをよりよく理解する(特徴づけ る)ために使われることが多い. (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1510442940/593
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 99 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.027s